Kajian Kuat Lekat pada Beton Bubuk Reaktif dengan Pasir Kuarsa 30% dan Variasi Fly Ash sebagai Substitusi Parsial Semen

Authors

  • Torianzyah Putra Bimandiri Sugiarto Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret
  • Endah Endah Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret
  • Wibowo Wibowo Program Studi Teknik Sipil, Fakultas Teknik, Universitas Sebelas Maret

DOI:

https://doi.org/10.47134/scbmej.v1i3.3008

Keywords:

Beton Bubuk Reaktif, Fly Ash, Kuat Lekat

Abstract

Infrastruktur memiliki peran penting dalam pertumbuhan ekonomi dan kemakmuran suatu negara, sehingga diperlukan konstruksi yang aman, kuat, kaku, dan stabil. Penggunaan bahan material dalam konstruksi sangat penting, terutama bahan seperti beton. Tujuan penelitian ini adalah untuk mengkaji dampak variasi kadar fly ash terhadap kekuatan lekat beton bubuk reaktif. Metode eksperimental digunakan dalam penelitian ini. Campuran beton dirancang dengan menggunakan 30% pasir kuarsa dan variasi kadar fly ash 0%, 5%, 10%, 15%, 20%, dan 25% dari berat semen. Benda uji yang digunakan adalah beton kubus dengan panjang sisi 20 cm. Kekuatan lekat beton diuji menggunakan Universal Testing Machine (UTM) dan dial gauge. Hasil penelitian menunjukkan bahwa nilai kekuatan lekat maksimum terjadi pada kadar fly ash 0%. Penambahan fly ash menyebabkan penurunan nilai kekuatan lekat. Nilai kekuatan lekat beton saat terjadi slip 0,25 mm pada kadar fly ash 0%, 5%, 10%, 15%, 20%, dan 25% berturut-turut adalah 14,35 MPa, 13,54 MPa, 12,10 MPa, 10,58 MPa, 8,60 MPa, dan 7,38 MPa. Sedangkan nilai kekuatan lekat beton pada beban maksimum pada kadar fly ash yang sama berturut-turut adalah 23,94 MPa, 23,79 MPa, 23,49 MPa, 23,31 MPa, 23,05 MPa, dan 22,92 MPa.

References

Akhnoukh, A. (2024). The Future of Ultra-High-Performance Concrete in Infrastructure Projects in the United States. Advances in Science, Technology and Innovation, 73–77. https://doi.org/10.1007/978-3-031-47612-9_8 DOI: https://doi.org/10.1007/978-3-031-47612-9_8

Al-Fadhli, S. K. (2023). Nonlinear-finite-element analysis of reactive powder concrete columns subjected to eccentric compressive load. Journal of the Mechanical Behavior of Materials, 32(1). https://doi.org/10.1515/jmbm-2022-0267 DOI: https://doi.org/10.1515/jmbm-2022-0267

Al-Jaberi, L. A. (2023). Workability and Compressive Strength Properties of Fly Ash-Metakaolin based Flowable Geopolymer Mortar. Electronic Journal of Structural Engineering, 23(4). https://doi.org/10.56748/ejse.23436 DOI: https://doi.org/10.56748/ejse.23436

American Society for Testing and Materials. (2013). ASTM C 1611C 1611M1 Standard Test Method for Slump Flow of Self-Consolidating Concrete. January, 1–6.

American Society for Testing and Materials. (2021). ASTM C 234-91a. 150 mm, 3–7.

Aprisona, E. (2021). Kajian Kuat Lekat dan Kapasitas Penjangkaran Tulangan Pada Beton Bubuk Reaktif Dengan Variasi Komposisi Silica Fume.

Badan Standarisasi Nasional Indonesia. (2017). SNI2052:2017 Baja tulangan beton. Badan Standarisasi Nasional, 15. www.bsn.go.id

Badan Standarisasi Nasional Indonesia. (2019). SNI 2847-2019 : Persyaratan Beton Struktural untuk Bangunan Gedung. Standar Nasional Indonesia, 8, 720.

Dinh, H. L. (2024). Influence of Si/Al molar ratio and ca content on the performance of fly ash-based geopolymer incorporating waste glass and GGBFS. Construction and Building Materials, 411. https://doi.org/10.1016/j.conbuildmat.2023.134741 DOI: https://doi.org/10.1016/j.conbuildmat.2023.134741

Dvorkin, L. (2023). COMPARATIVE CHARACTERISTICS OF REACTIVE POWDER CONCRETES USING FLY ASH AND MICROSILICA. Revista Romana de Materiale/ Romanian Journal of Materials, 53(4), 306–315.

Ge, W. (2023a). Hydration characteristics, hydration products and microstructure of reactive powder concrete. Journal of Building Engineering, 69. https://doi.org/10.1016/j.jobe.2023.106306 DOI: https://doi.org/10.1016/j.jobe.2023.106306

Ge, W. (2023b). Study on the workability, mechanical property and water absorption of reactive powder concrete. Case Studies in Construction Materials, 18. https://doi.org/10.1016/j.cscm.2022.e01777 DOI: https://doi.org/10.1016/j.cscm.2022.e01777

Gu, X. (2024). Elucidating the reaction of seashell powder within fly ash cement: A focus on hydration products. Construction and Building Materials, 428. https://doi.org/10.1016/j.conbuildmat.2024.136331 DOI: https://doi.org/10.1016/j.conbuildmat.2024.136331

Ju, Y. (2024). Effect of mineral admixtures on the resistance to sulfate attack of reactive powder concrete. Journal of Cleaner Production, 440. https://doi.org/10.1016/j.jclepro.2024.140769 DOI: https://doi.org/10.1016/j.jclepro.2024.140769

Li, Q. (2024). Improving sulfate and chloride resistance in eco-friendly marine concrete: Alkali-activated slag system with mineral admixtures. Construction and Building Materials, 411. https://doi.org/10.1016/j.conbuildmat.2023.134333 DOI: https://doi.org/10.1016/j.conbuildmat.2023.134333

Nguyen, V. D. (2023). Incorporation of high loss-on-ignition fly ash into high-strength mortar: Influence on short-term engineering properties. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.531 DOI: https://doi.org/10.1016/j.matpr.2023.03.531

Ralli, Z. G. (2024). Development and Characterization of Tension-Hardening Quarry Waste-Based Geopolymer Concrete. ACI Materials Journal, 121(3), 53–67. https://doi.org/10.14359/51740704 DOI: https://doi.org/10.14359/51740704

Richard, P., and Cheyrezy, M., 1995, Composition of Reactive Powder Concretes, Cement and Concrete Research, Vol. 25, No.7, pp. 1501-1511 DOI: https://doi.org/10.1016/0008-8846(95)00144-2

RILEM. (1994). Rilem Technical Recommendations for the Testing and Use of Construction Materials. DOI: https://doi.org/10.1201/9781482271362

Rizka, M. N. (2022). KAJIAN KUAT LEKAT PADA BETON BUBUK REAKTIF DENGAN SILICA FUME 15 % DAN VARIASI PASIR KUARSA. 10(4), 367–374. DOI: https://doi.org/10.20961/mateksi.v10i4.63687

Setiawati, M. (2018). Fly Ash Sebagai Bahan Pengganti Semen Pada Beton. Seminar Nasional Sains dan Teknologi, 17, 1–8. https://jurnal.umj.ac.id/index.php/semnastek/article/view/3556

Winter, G. & Nilson, A, H. 1993. Perencanaan Struktur Beton Bertulang, Pradnya Paramita, Jakarta

Xu, J. (2023). The Influence of CO2-Cured Incinerated Waste Fly Ash on the Performance of Reactive Powder Concrete. Coatings, 13(4). https://doi.org/10.3390/coatings13040709 DOI: https://doi.org/10.3390/coatings13040709

Xu, X. (2023). Preparation of low-cost reactive powder concrete using waste steel fibres recycled from scrap tires. Road Materials and Pavement Design, 24(5), 1254–1272. https://doi.org/10.1080/14680629.2022.2067073 DOI: https://doi.org/10.1080/14680629.2022.2067073

Yu, X. (2024). Chloride Ion Penetration Resistance of Reactive Powder Concrete with Mineral Admixtures. Medziagotyra, 30(2), 233–238. https://doi.org/10.5755/j02.ms.34962 DOI: https://doi.org/10.5755/j02.ms.34962

Downloads

Published

2024-07-23

How to Cite

Sugiarto, T. P. B., Endah, E., & Wibowo, W. (2024). Kajian Kuat Lekat pada Beton Bubuk Reaktif dengan Pasir Kuarsa 30% dan Variasi Fly Ash sebagai Substitusi Parsial Semen. Sustainable Civil Building Management and Engineering Journal, 1(3), 10. https://doi.org/10.47134/scbmej.v1i3.3008

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.