Numerical Study of Flexural Performance of Reactive Powder Concrete Slabs with 15% Silica Fume and 30% Quartz Sand on Variations of Thickness and Long - Short Span Ratio
DOI:
https://doi.org/10.47134/scbmej.v1i3.2793Keywords:
ATENA, Concrete Slab, Reactive Powder ConcreteAbstract
As the development of infrastructure progresses rapidly, concrete technology is also required to continuously improve. Numerous studies on concrete technology have been conducted to meet these demands, one of which is the innovation of Reactive Powder Concrete (RPC) with 15% silica fume and 30% quartz sand. One application of reactive powder concrete in structural element design is the concrete slab. A concrete slab is a thin structure with a horizontal plane and loads perpendicular to the plane of the structure. Concrete slabs are designed to withstand bending loads due to bending moments caused by heavy loads, which are a combination of dead loads and live loads. Therefore, it is necessary to conduct flexural performance tests on concrete slabs to determine their ability to withstand loads that cause bending moments on the slabs. The research aims to compare the experimental test results with numerical analysis of the flexural performance of reactive powder concrete slabs with varying thicknesses and span length - width ratios. The test specimens for varying thicknesses measure 70 cm x 30 cm with thickness variations of 4 cm, 5 cm, 6 cm, and 7 cm. Meanwhile, the test specimens for varying span length-to-width ratios have a thickness of 5 cm and a length of 70 cm with span length-to-width ratio variations of 2,5; 2,7; 2,9; and 3,1. The research method used is non-linear finite element analysis with ATENA Engineering Červenka Consulting software. This research includes verification of experimental test results with numerical analysis results in terms of both maximum load and maximum deflection. The verification results of numerical analysis using ATENA Engineering Červenka Consulting software with experimental testing on both thickness variations and span length - width ratio variations show a corresponding trend curve based on the load-deflection graph, with the difference in maximum load and maximum deflection values between experimental test results and numerical analysis results being below 10%.
References
Aisyah, G. N. (2018). Penggunaan Bahan Silica Fume, Superplasticizer dan Fiber Polypropylene Pada Roller Compacted Concrete (RCC) dengan Alat Pemadatan Standard Proctor. http://etd.repository.ugm.ac.id/penelitian/detail/162777
Alkhaly, Y. R. (2017). Reactive Powder Concrete Dengan Sumber Silika Dari Limbah Bahan Organik. Teras Jurnal : Jurnal Teknik Sipil, 3(2), 157. https://doi.org/10.29103/tj.v3i2.41 DOI: https://doi.org/10.29103/tj.v3i2.41
Cervenka, V., & Cervenka, J. (2017). ATENA Program Documentation Part 2-2 User ’s Manual for ATENA 3D. November, 144.
Dwiamirta, T. D., & Saelan, P. (2022). Studi mengenai Prediksi Kuat Tekan Reactive Powder Concrete (RPC) menggunakan Formulasi Dreux Gorisse. 42–53.
Faqihuddin, A., Hermansyah, H., & Kurniati, E. (2021). Tinjauan Campuran Beton Normal dengan Penggunaan Superplasticizer Sebagai Bahan Pengganti Air Sebesar 0%; 0,3%; 0;5% Dan 0,7% Berdasarkan Berat Semen. Journal of Civil Engineering and Planning, 2(1), 34–45. https://doi.org/10.37253/jcep.v2i1.4389 DOI: https://doi.org/10.37253/jcep.v2i1.4389
Fikri, M., Muhtar, & Manggala, A. S. (2023). Studi Ekperimental Pengaruh Tebal Terhadap Kapasitas Dan Kekakuan Pelat Satu Arah Beton Bertulang Tunggal. Jurnal Smart Teknologi, 4(5), 566–5.
Gunawan, P., & Yahya, M. S. (2015). 37268-92224-1-Pb. September, 695–702.
Hayyu Putri, A., Masril, M., & Kurniawan, D. (2021). Perencanaan Struktur Gedung Pasar Raya Padang. Ensiklopedia Research and Community Service Review, 1(1), 137–143. https://doi.org/10.33559/err.v1i1.1103 DOI: https://doi.org/10.33559/err.v1i1.1103
Khadafi, R. R. (2014). PENGARUH PERUBAHAN KETEBALAN PELAT TERHADAP LENDUTAN PELAT BETON UHPFRC. Universitas Negeri Jember.
Kushartomo, W., & Christianto, D. (2015). Pengaruh Serat Lokal Terhadap Kuat Tekan dan Kuat Lentur Reactive Powder Concrete dengan Teknik Perawatan Penguapan. Jurnal Teknik Sipil, 22(1), 31–36.
Pereira, A. M., Ningrum, D., & Rasidi, N. (2017). Pengaruh Variasi Ketebalan Pelat Panel Komposit Bambu Spesi Terhadap Kuat Lentur Beton Dengan Tulangan Bambu Ori. EUREKA: Jurnal Penelitian Teknik Sipil Dan Teknik Kimia, 1(1), 1–8.
Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research. https://doi.org/10.1016/0008-8846(95)00144-2 DOI: https://doi.org/10.1016/0008-8846(95)00144-2
Sarika S, & Dr. Elson John. (2015). A Study on Properties of Reactive Powder Concrete. International Journal of Engineering Research And, V4(11), 110–113. https://doi.org/10.17577/ijertv4is110170 DOI: https://doi.org/10.17577/IJERTV4IS110170
SNI 2847. (2019). SNI 2847:2019 Persyaratan beton struktural untuk bangunan gedung dan penjelasan. Sni 2847-2019.
Syahland, S. J. (2017). Perhitungan Plat Lantai Struktur Existing pada Gedung Puskesmas Ganjar Agung Kota Metro. TAPAK (Teknologi Aplikasi Konstruksi), 6(2), pp.190-203.
Wibowo, W., Basuki, A., & Habibi, M. H. (2022). Kajian Modulus of Rupture Dan Kuat Tarik Belah Pada Beton Bubuk Reaktif Dengan Variasi Komposisi Silica Fume. Matriks Teknik Sipil, 10(2), 153. https://doi.org/10.20961/mateksi.v10i2.60823 DOI: https://doi.org/10.20961/mateksi.v10i2.60823
Wibowo, W., Safitri, E., & Arsanto, B. D. (2024). Kajian Kuat Lentur pada Beton Beton Bubuk Reaktif Dengan Silica Fume 15% dan Variasi Pasir Kuarsa. Matriks Teknik Sipil, 11(3), 299. https://doi.org/10.20961/mateksi.v11i3.76577 DOI: https://doi.org/10.20961/mateksi.v11i3.76577
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wibowo Wibowo, Setiono Setiono, Muhammad Naufal Ramadhan

This work is licensed under a Creative Commons Attribution 4.0 International License.