Akurasi Dimensi Komponen Multi-material Hasil Manufaktur Digital Light Processing (DLP) 3D Printing
DOI:
https://doi.org/10.47134/jme.v1i1.2191Keywords:
Digital Light Processing, 3D Printing, Accuracy, Multi-materialAbstract
Workpieces resulting from 3D printing manufacturing which were initially only for rapid prototyping purposes, are now used for final products. In its development, a method is needed that can accommodate the creation of multi-material structures because there are complex structures that require hard materials and elastic materials in one part at once. Multi-material manufacturing with a laminate structure in DLP 3D printing can be done by changing the resin material periodically as needed. One important aspect in multi-material 3D printing manufacturing is dimensional accuracy. In this research, the accuracy of multi-material specimen layer thickness from DLP 3D printer manufacturing was studied. The specimens were manufactured with a uniform CAD design, but with varying numbers of material layer pairs. The thickness of each layer of the specimen is measured. From the measurement results, it is known that there is an error in the thickness of each specimen due to the bottom layer phenomenon and the influence of the penetration range of UV light in the DLP 3D printing technique due to differences in the color density of the resin material and the concentration of the photoinitiator.
References
Arcaute, K., Mann, B., dan Wicker, R. (2010). Acta Biomaterialia Stereolithography of spatially controlled multi-material bioactive poly ( ethylene glycol ) scaffolds. Acta Biomaterialia, 6(3), 1047–1054. https://doi.org/10.1016/j.actbio.2009.08.017 DOI: https://doi.org/10.1016/j.actbio.2009.08.017
Awali, J., Tanjung, R. A., Sasria, N., Putri, M., & Lubis, D. (2020). Pelatihan 3D Printing Dengan Metode Daring Untuk Siswa Smkn 5 Dan Smkn 2 Balikpapan.
Beer, F., Johnston, E., dan DeWolf, J. (2014). Mechanics of materials, 7th SI Edition. (Vol. 1, Issue 10).
Chhabra, M., Nanditha Kumar, M., RaghavendraSwamy, K. N., dan Thippeswamy, H. M. (2022). Flexural strength and impact strength of heat-cured acrylic and 3D printed denture base resins- A comparative in vitro study. Journal of Oral Biology and Craniofacial Research, 12(1), 1–3. https://doi.org/10.1016/j.jobcr.2021.09.018 DOI: https://doi.org/10.1016/j.jobcr.2021.09.018
Choi, J. W., Kim, H. C., dan Wicker, R. (2011). Multi-material stereolithography. Journal of Materials Processing Technology, 211(3), 318–328. https://doi.org/10.1016/j.jmatprotec.2010.10.003. DOI: https://doi.org/10.1016/j.jmatprotec.2010.10.003
Han, D., Yang, C., Fang, N. X., dan Lee, H. (2019). Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Additive Manufacturing, 27(April), 606–615. https://doi.org/10.1016/j.addma.2019.03.031 DOI: https://doi.org/10.1016/j.addma.2019.03.031
Jakubiak, J., dan Rabek, J. F. (2001). Three-dimensional (3D) photopolymerization in the stereolithography. Part II. Technologies of the 3D photopolymerization. Polimery/Polymers, 46(3), 164–172. https://doi.org/10.14314/polimery.2001.164 DOI: https://doi.org/10.14314/polimery.2001.164
Karuniawan, B. W., Rachman, F., & Yoningtias, M. T. (2022). Metode Taguchi Untuk Optimasi Parameter Mesin Printer 3D Terhadap Kwalitas Produk Material Abs. Austenit, 14(2), 61–68. http://doi.org/10.5281/zenodo.7265857
Khatri, B., Frey, M., Raouf-fahmy, A., dan Scharla, M. (2020). Development of a Multi-Material Stereolithography 3D Printing Device. Micromachines. May. https://doi.org/10.3390/mi11050532 DOI: https://doi.org/10.3390/mi11050532
Mao, H., dan Chen, Y. (2021). Multi-material stereolithography using curing- on-demand printheads. Rapid Prototyping Journal. June. https://doi.org/10.1108/RPJ-05-2020-0104 DOI: https://doi.org/10.1108/RPJ-05-2020-0104
Matharu, P. S., Wang, Z., Costello, J. H., Colin, S. P., Baughman, R. H., dan Tadesse, Y. T. (2023). SoJel –A 3D printed jellyfish-like robot using soft materials for underwater applications. Ocean Engineering, 279(April), 114427. https://doi.org/10.1016/j.oceaneng.2023.114427 DOI: https://doi.org/10.1016/j.oceaneng.2023.114427
Mekarona, D., Poesoko, A. S. S., & ... (2023). Analisis Penerapan Metode Rapid Prototyping Dalam Pembuatan Prototipe Dan Optimization Perubahan Diameter Pulley Pada Mesin Maker Di PT. XYZ. … Nasional Teknologi Industri …, Senastitan Iii, 1–11.
Rayna, T., dan Striukova, L. (2016). From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102, 214–224. https://doi.org/10.1016/j.techfore.2015.07.023 DOI: https://doi.org/10.1016/j.techfore.2015.07.023
Romero, P. E., Arribas-Barrios, J., Rodriguez-Alabanda, O., González-Merino, R., & Guerrero-Vaca, G. (2021). Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds. CIRP Journal of Manufacturing Science and Technology, 32, 396–404. https://doi.org/10.1016/j.cirpj.2021.01.019 DOI: https://doi.org/10.1016/j.cirpj.2021.01.019
Shenzhen Anycubic Technology Co., Ltd, (2021) Anycubic Photon Mono 4k User Manual
Shenzhen Esun Industrial Co., L. (2021) eResin-PLA Technical Data Sheet, Materials Technical Data Sheet. Available on: https://www.esun3d.com/eresin-pla-product/
Song, Q., Chen, Y., Hou, P., Zhu, P., Helmer, D., Kotz-helmer, F., dan Rapp, B. E. (2023). Fabrication of Multi-Material Pneumatic Actuators and Microactuators Using Stereolithography. Micromachines, 14, 244. https://doi.org/10.3390/mi14020244 DOI: https://doi.org/10.3390/mi14020244
Vitale, A., dan Cabral, J. T. (2016). Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials, 9(9), 1–13. https://doi.org/10.3390/ma9090760 DOI: https://doi.org/10.3390/ma9090760
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Mechanical Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.