Pengaruh Dimensi Saluran Buang dan Sudut Kipas Generator Terhadap Kinerja Perangkat Oscillating Water Column

Authors

DOI:

https://doi.org/10.47134/jme.v1i1.2188

Keywords:

Ocean Wave Energy, Oscillsting Water Column (OWC), Optimization, Exhaust Dust Diameter, Generator Fan Fngle

Abstract

This research aims to investigate the potential for optimizing ocean wave energy conversion using an Oscillating Water Column (OWC) device by focusing on the influence of variations in exhaust duct diameter and generator fan angle. Electrical energy, as a major need in Indonesia, demands exploration of renewable energy sources as an alternative to fossil fuels. Experiments were carried out by varying the exhaust duct diameter (5.5 cm, 4.5 cm, 3.5 cm) and generator fan angle (20°, 25°, 30°). The research results show that there is a significant influence of these two variables on OWC performance. The results of wind speed measurements show that with an exhaust channel dimension of 5 cm, the wind speed at an angle of 45° reaches 2.24 m/s, while at angles of 35° and 40° it is 0 m/s. In the same dimensions, increasing the exhaust duct dimensions increases the wind speed, with a dimension of 15 cm providing optimal results at all fan angles. Measuring the fan RPM in the exhaust duct dimensions (5 cm, 10 cm, 15 cm) shows that in the dimensions 5 cm and 15 cm, the fan RPM is 0 at an angle of 35°. Increasing exhaust duct dimensions, especially the 10 cm and 15 cm dimensions, provides a significant increase in RPM at 40° and 45° angles. The 15 cm dimension provides the best performance, especially at 45° angles. Voltage measurements at three angles (35°, 40°, 45°) with varying exhaust channel dimensions show that at dimensions of 5 cm and 15 cm, the voltage is 0 V at an angle of 35°. Increasing the fan angle, especially in the 10 cm and 15 cm dimensions, provides increased voltage. Dimensions 10 cm, at an angle of 45°, reaches the highest voltage of 24.68 V.

References

Alwie, rahayu deny danar dan alvi furwanti, Prasetio, A. B., Andespa, R., Lhokseumawe, P. N., & Pengantar, K. (2020). Tugas Akhir Tugas Akhir. Jurnal Ekonomi Volume 18, Nomor 1 Maret201, 2(1), 41–49.

Arifin, J. (2020). PROTOTIP OSCILLATING WATER COLUMB ( OWC ). 5(1), 14–17. DOI: https://doi.org/10.31602/al-jazari.v5i1.3042

BPPT. (2020). Indonesia Energy Outlook 2020 - Special Edition Dampak Pandemi COVID-19 terhadap Sektor Energi di Indonesia. In PPIPE dan BPPT. https://www.researchgate.net/publication/343903321_OUTLOOK_ENERGI_INDONESIA_2020_Dampak_Pandemi_COVID-19_terhadap_Sektor_Energi_di_Indonesia

Buwana, M., Royyana, N., Budiarto, U., Rindho, G., Teknik, F., & Diponegoro, U. (2015). ANALISA BENTUK OSCILLATING WATER COLUMN UNTUK ENERGI TERBARUKAN DENGAN METODE COMPUTATIONAL. 3(1), 47–55.

Cengel, A. Yunus & John, M. Cimbala (2004). Fluid Mechanics Fundamentals and Applications. New York: McGraw-Hill, hal. 351 John Ashlin, S., Sundar, V., &

Eksperimental, S., Dimensi, P., Letak, D. A. N., Buang, S., Kinerja, T., Column, O. W., Mesin, T., Teknik, K., Energi, K., Brawijaya, U., & Teknik, F. (2018). Studi eksperimental pengaruh dimensi dan letak saluran buang terhadap kinerja perangkat oscillating water column.

Fadilah, W. N., Junianto, S., Arini, N. R., Pratilastiarso, J., Studi, P., Terapan, S., Pembangkit, S., & Surabaya, E. N. (2023). Studi Numerik Pengaruh Geometri Dasar Laut Berbentuk Convex Terhadap Performa Hidrodinamis Oscillating Water Column ( OWC ) pada Gelombang Pendek. 25(4), 53–59.

Fluida, D. M., & D, A. G. P. (n.d.). Dasar-Dasar Mekanika Fluida Ainul Ghurri Ph . D .

Jasron, J. U., Mangesa, D. P., Boimau, K., & Tarigan, B. V. (2022). Analisa Potensi Gelombang Laut sebagai Sumber Energi Terbarukan Menggunakan Perangkat Oscillating Water Column ( OWC ) Di Wilayah Perairan Laut Timor. 09(01), 14–20. DOI: https://doi.org/10.35508/ljtmu.v9i01.7269

Jasron, J. U., Studi, P., & Mesin, T. (2021). Pengaruh Resonansi Terhadap Perubahan Efisiensi Perangkat Oscillating Water Column ( OWC ). 08(01), 99–106.

Kasi, P. S., Jasron, J. U., Studi, P., & Mesin, T. (2023). Analisis Perubahan Tekanan Udara Perangkat Oscillating Water Column dengan Metode phi-Buchingham. 10(01). DOI: https://doi.org/10.35508/ljtmu.v10i01.11051

Kunci, K., Listrik, E., Laut, G., Wilson, M., Owc, S., & Belakang, L. (2016). Studi Potensi Energi Listrik Tenaga Gelombang Laut Sistem Oscillating Water Column ( OWC ) di Perairan Pesisir Kalimantan Barat. VI(1), 8–16.

Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column. Journal of Offshore Mechanics and Arctic Engineering, 129(4), 273. DOI: https://doi.org/10.1115/1.2426992

Munson, B. R & Young, F. Donald (2002). Mekanika Fluida. Jakarta:Erlangga, hal. 237

Ning, D. Z., Wang, R. Q., Zou, Q. P., & Teng, B. (2016). An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter. Applied Energy, 168, 636–648. DOI: https://doi.org/10.1016/j.apenergy.2016.01.107

Patel, S. K., Ram, K., & Ahmed, M. R. (2013). Effect of turbine section orientation on the performance characteristics of an oscillating water column device. Experimental Thermal and Fluid Science, 44, 642–648. DOI: https://doi.org/10.1016/j.expthermflusci.2012.09.004

Pln, S. (n.d.). No Title.

Sannasiraj, S. A. (2016). Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, 96, 341–353. DOI: https://doi.org/10.1016/j.renene.2016.04.091

Sukma, A. F. (2023). Mekanisme Tenaga Air Laut Menjadi Energi Terbarukan Listrik. 6, 123–129. https://doi.org/10.36339/j-hest.v6i1.135

Sultan, A. D., Mulyani, S., & Yusuf, W. A. (2020). Jurnal Pendidikan Fisika Universitas Muhammadiyah Makassar Analysis of the Effect of Cross-sectional Area on Water Flow Velocity by Using Venturimeter Tubes Analisis Pengaruh Luas Penampang pada Kecepatan Aliran Air dengan Menggunakan Tabung Venturimeter. 8, 94–99. https://doi.org/10.26618/jpf.v8i1.3199 DOI: https://doi.org/10.26618/jpf.v8i1.3199

Utami, S. R. (2007). Studi Potensi Pembangkit Listrik Tenaga Gelombang Laut Dengan Menggunakan Sistem Oscilating Water Column (Owc) Di Tiga Puluh Wilayah Kelautan Indonesia. Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia

Winarto, E. W., Sugiyanto, S., Siswantoro, S., & Djati, I. (2021). Turbin Hibrid Bi-Directional Sebagai Pemanen Energi pada Thermoacoustic Engine. Jurnal Rekayasa Mesin, 12(1), 19. https://doi.org/10.21776/ub.jrm.2021.012.01.3 DOI: https://doi.org/10.21776/ub.jrm.2021.012.01.3

Downloads

Published

2024-01-29

How to Cite

Nely Ana , M., Fidhausi Alviyndin , A. A., & Kosjoko, K. (2024). Pengaruh Dimensi Saluran Buang dan Sudut Kipas Generator Terhadap Kinerja Perangkat Oscillating Water Column. Journal of Mechanical Engineering, 1(1), 33–41. https://doi.org/10.47134/jme.v1i1.2188

Issue

Section

Articles