Analisis Ukuran Partikel Nanosilica Pada Proses Alkali Fusion Silica Scaling Geotermal Dieng Menggunakan KOH

Authors

DOI:

https://doi.org/10.47134/jme.v1i1.2183

Keywords:

Silica Scaling, Alkali Fusion, Nanosilica

Abstract

One of the characteristics of the Dieng geothermal field is the high silica content in the production fluid which causes the appearance of silica scaling. The presence of silica scaling inhibits the energy extraction process and becomes waste that disturbs the environment. The silica scaling can be utilized as a nanosilica product for use as a reinforcing filler. Nano-sized powder is expected to improve the mechanical properties of a product with denser results. This research aims to synthesize nanosilica from geothermal scaling silica using the alkali fusion method. Nanosilica is obtained by reacting alkali KOH with silica scaling which has been reduced in size using ball milling. The fusion process is carried out using heat treatment at varying temperatures of 400, 450 and 500ºC. The fusion results were dissolved in distilled water for titration using 2M HCl with stirring using a magnetic stirrer until gelation was formed which was dried into silica nanoparticles. Characterization of the size of nanosilica powder using the Particle Size Analyzer (PSA) obtained the smallest size data at a fusion temperature of 400ºC with the size tending to increase as the fusion temperature increased, where these results were in line with the analysis of nanosilica images from Transmission Electron Microscopy (TEM) testing using ImageJ software. Compound analysis using Fourier Transform Infra-Red (FTIR) shows the presence of characteristic silica bonds. The results of X-Ray Diffraction (XRD) do not show sharp peaks so the compound has an amorphous phase.

References

Abdou, S. M., & Moharam, H. (2019). Characterization of table salt samples from different origins and ESR detection of the induced effects due to gamma irradiation. Journal of Physics: Conference Series, 1253(1). https://doi.org/10.1088/1742-6596/1253/1/012036 DOI: https://doi.org/10.1088/1742-6596/1253/1/012036

Adhikari, T. (2021). Nanotechnology in Environmental Soil Science. Soil Science: Fundamentals to Recent Advances, February, 297–310. https://doi.org/10.1007/978-981-16-0917-6_14 DOI: https://doi.org/10.1007/978-981-16-0917-6_14

Adiatama, A. R., Susanti, R. F., Astuti, W., Petrus, H. T. B. M., & Wanta, K. C. (2022). SYNTHESIS AND CHARACTERISTIC OF NANO SILICA FROM GEOTHERMAL SLUDGE: EFFECT OF SURFACTANT. Metalurgi, 2, 73–86. DOI: https://doi.org/10.14203/metalurgi.v37i2.637

Allendorf, M. D., & Spear, K. E. (2015). Thermodynamic Analysis of Silica Refractory Corrosion in Glass-Melting Furnaces Thermodynamic Analysis of Silica Refractory Corrosion in Glass-Melting Furnaces. January 2001. https://doi.org/10.1149/1.1337603 DOI: https://doi.org/10.1149/1.1337603

Chitra, F., Shofiyani, A., Rahmalia, W., & Alimuddin, A. H. (2019). Sintesis Nanosilika dari Batu Padas untuk Penurunan Karbon Organik Total Dari Limbah Industri Sawit. Jurnal Ilmu Dasar, 20(1), 39–46. DOI: https://doi.org/10.19184/jid.v20i1.8679

El-Didamony, H., El-Fadaly, E., Amer, A. A., & Abazeed, I. H. (2020). Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 59(1), 31–43. https://doi.org/10.1016/j.bsecv.2019.06.004 DOI: https://doi.org/10.1016/j.bsecv.2019.06.004

Gupta, S. (2013). Application of Silica Fume and Nanosilica in Cement and Concrete – A Review. Journal on Today’s Ideas - Tomorrow’s Technologies, 1(2), 85–98. https://doi.org/10.15415/jotitt.2013.12006 DOI: https://doi.org/10.15415/jotitt.2013.12006

Jenie, S. N. A., Ghaisani, A., Ningrum, Y. P., Kristiani, A., Aulia, F., & Petrus, H. T. M. B. (2018). Preparation of silica nanoparticles from geothermal sludge via sol-gel method. AIP Conference Proceedings, 2026, 1–6. https://doi.org/10.1063/1.5064968 DOI: https://doi.org/10.1063/1.5064968

Muh, W. S., Ina, A., Indri, H., & Yayat, I. S. (2020). Silica from geothermal waste as reinforcing filler in artificial leather. Key Engineering Materials, 849 KEM(June), 78–83. https://doi.org/10.4028/www.scientific.net/KEM.849.78 DOI: https://doi.org/10.4028/www.scientific.net/KEM.849.78

Mujiyanti, D. R., Ariyani, D., & Lisa, M. (2021). Indonesian Journal of Chemical Research Silica Content Analysis of Siam Unus Rice Husks from South Kalimantan. J. Chem. Res, 9(2), 81–87. https://doi.org/10.30598//ijcr.2021.9-muj DOI: https://doi.org/10.30598//ijcr.2020.9-muj

Munasir, Widodo, Triwikantoro, Zainuri, M., & Darminto. (2012). Perbandingan Massa Kalium Hidroksida Pada Ekstraksi SiO2 Orde Nano Berbasis Bahan Alam Pasir Kuarsa. Prosiding Seminar Nasional Sains Dan Pendidikan Sains VII UKSW, 40–44. DOI: https://doi.org/10.26740/jpfa.v2n1.p20-29

Nurhapsari, A., & Rizkia Putri Kusuma, A. (2018). Penyerapan Air dan Kelarutan Resin Komposit Tipe Microhybrid, Nanohybrid, Packable dalam Cairan Asam. ODONTO Dental Journal, 5(1), 67–75.

Rahman, I. A. B., Masudi, S. M., Luddin, N., & Shiekh, R. A. (2014). One-pot synthesis of hydroxyapatite-silica nanopowder composite for hardness enhancement of glass ionomer cement (GIC). Bulletin of Materials Science, 37(2), 213–219. https://doi.org/10.1007/s12034-014-0648-3 DOI: https://doi.org/10.1007/s12034-014-0648-3

Rampe, M. J., Lombok, J. Z., Tiwow, V. A., Tengker, S. M. T., & Bua, J. (2023). CHARACTERIZATION OF SILICA (SiO2) BASED ON BEACH SAND FROM SULAWESI AND SUMATRA AS SILICON CARBIDE (SiC) BASE MATERIAL. Journal of Chemical Technology and Metallurgy, 58(3), 467–476. DOI: https://doi.org/10.59957/jctm.v58i3.75

Shofiyani, A., Rahmiyati, Y., Zaharah, A., Kimia, J., Mipa, F., & Tanjungpura, U. (2020). Nanosilika Berbahan Dasar Batu Padas Sebagai Adsorben Zat Warna Sintetis Rhodamin B. Indonesian Journal of Chemical Science, 9(3), 188–193.

Silviana, S., Sanyoto, G. J., Darmawan, A., & Sutanto, H. (2020). Geothermal silica waste as sustainable amorphous silica source for the synthesis of silica xerogels. Rasayan Journal of Chemistry, 13(3), 1692–1700. https://doi.org/10.31788/RJC.2020.1335701 DOI: https://doi.org/10.31788/RJC.2020.1335701

Sukanto, Soenoko, R., Suprapto, W., & Irawan, Y. S. (2019). Parameter Optimization of Ball Milling Process for Silica Sand Tailing. IOP Conference Series: Materials Science and Engineering, 494(1), 0–10. https://doi.org/10.1088/1757-899X/494/1/012073 DOI: https://doi.org/10.1088/1757-899X/494/1/012073

Suryadi, J., Sulaeman, S. A., Yulianthina, S., Paramitha, T., & Andrijanto, E. (2023). Karakter Ikatan Kimia, Kristalinitas, dan Ukuran Partikel Produk Silika yang Disintesis dari Bahan Limbah Padat Geotermal. JC-T (Journal Cis-Trans): Jurnal Kimia Dan Terapannya, 7(1), 10–15. https://doi.org/10.17977/um0260v7i12023p010 DOI: https://doi.org/10.17977/um0260v7i12023p010

Wahyudi, A., Technology, C., & Amalia, D. (2017). Preparation of Nano Silica from Silica Sand Through Alkali Fusion PREPARation of NANO SILICA FROM SILICA SAND THROUGH ALKALI FUSION PROCESS. October 2013.

Wahyudityo, R., Harto, A. W., & Suryopratomo, K. (2013). Analisis Scaling Silika pada Pipa Injeksi Brine di Lapangan Panas Bumi Dieng dengan Studi Kasus di PT. Geo Dipa Energi. Teknofisika, 2(1), 7–14.

Widati, A. A. (2021). Greensphere : Journal of Environmental Chemistry. Greensphere, 1(1), 25–30. DOI: https://doi.org/10.14710/gjec.2021.10899

Yokoyama, T., Masuda, H., Suzuki, M., Ehara, K., Nogi, K., Fuji, M., Fukui, T., Suzuki, H., Tatami, J., Hayashi, K., & Toda, K. (2018). Basic Properties and Measuring Methods of Nanoparticles. In Nanoparticle Technology Handbook. https://doi.org/10.1016/B978-0-444-64110-6.00001-9 DOI: https://doi.org/10.1016/B978-0-444-64110-6.00001-9

Downloads

Published

2024-01-29

How to Cite

Waziz, W., Fitriani, F., & Riko Aulia , R. (2024). Analisis Ukuran Partikel Nanosilica Pada Proses Alkali Fusion Silica Scaling Geotermal Dieng Menggunakan KOH. Journal of Mechanical Engineering, 1(1), 23–32. https://doi.org/10.47134/jme.v1i1.2183

Issue

Section

Articles