Karakteristik Semburan Bahan Bakar Aviation Gasoline dengan Nozzle Pesawat Cessna 172S

Authors

DOI:

https://doi.org/10.47134/jme.v1i1.2182

Keywords:

Avgas, Characteristics, Temperature,Distance

Abstract

Avgas fuel is fuel from aviation engines, namely piston engine type aircraft, where the spray of this fuel is very influential on the life of a piston type aircraft engine. The characteristics of avgas fuel bursts, namely the distance, temperature and shape of the spray, are rarely studied in Indonesia, so with using experimental and varied data collection techniques, we obtained the characteristic results of the avgas type fuel spray and its mixture, where the mixture of 20% ethanol with a distance of 21 cm at a pressure of 3 bar is the lowest point of the fuel mixture spray temperature, namely reaching 15oC, the effect of The mixture of fuel with ethanol means spots on the walls and combustion chamber due to the mixture of alcohol containing water so that traces and water spots can become crust on the combustion chamber.

References

Aguilar, G., Majaron, B., Pope, K., Svaasand, L. O., Lavernia, E. J., & Nelson, J. S. (2001). In¯uence of Nozzle-to-Skin Distance in Cryogen Spray Cooling for Dermatologic Laser Surgery. Dalam Lasers in Surgery and Medicine (Vol. 28). DOI: https://doi.org/10.1002/lsm.1025

Anam, M. K., Kustanto, Muh. N., & Junus, S. (2023). The characteristics of liquified petroleum gas (LPG) combustion through a screw nozzle. AIP Conference Proceedings, 2694(1), 070001. https://doi.org/10.1063/5.0118341 DOI: https://doi.org/10.1063/5.0118341

Chen, S., Lan, Y., Zhou, Z., Deng, X., & Wang, J. (2021). Research advances of the drift reducing technologies in application of agricultural aviation spraying. International Journal of Agricultural and Biological Engineering, 14(5), 1–10. DOI: https://doi.org/10.25165/j.ijabe.20211405.6225

https://doi.org/10.25165/j.ijabe.20211405.6225 DOI: https://doi.org/10.25165/j.ijabe.20211405.6225

Fritz, B. K., Hoffmann, W. C., Bagley, W. E., Kruger, G. R., Czaczyk, Z., & Henry, & R. S. (2014). MEASURING DROPLET SIZE OF AGRICULTURAL SPRAY NOZZLES-MEASUREMENT DISTANCE AND AIRSPEED EFFECTS. Dalam Atomization and Sprays (Vol. 24, Nomor 9). DOI: https://doi.org/10.1615/AtomizSpr.2014008424

Geng, L., Wang, Y., Wang, J., Wei, Y., & Lee, C. fon F. (2020). Numerical simulation of the influence of fuel temperature and injection parameters on biodiesel spray characteristics. Energy Science and Engineering, 8(2), 312–326. https://doi.org/10.1002/ese3.429 DOI: https://doi.org/10.1002/ese3.429

Ikhsani, A. A., Kustanto, M. N., & Fachri, B. A. (2021). Heating Treatment of Air in Combustion Chamber For The Use of Mixture Ethanol and Gasoline Fuel. IOP Conference Series: Materials Science and Engineering, 1071(1), 012006. https://doi.org/10.1088/1757-899x/1071/1/012006 DOI: https://doi.org/10.1088/1757-899X/1071/1/012006

Kumar, T., Mohsin, R., Ghafir, M. F. A., Kumar, I., & Wash, A. M. (2018). Concerns over use of leaded aviation gasoline (AVGAS) fuel. Chemical Engineering Transactions, 63, 181–186. https://doi.org/10.3303/CET1863031

Li, X., Li, T., & Xu, M. (2019). Effect of ambient temperature on flash-boiling spray characteristics for a multi-hole gasoline injector. Experiments in Fluids, 60(7). https://doi.org/10.1007/s00348-019-2754-x DOI: https://doi.org/10.1007/s00348-019-2754-x

Luo, H., Nishida, K., Uchitomi, S., Ogata, Y., Zhang, W., & Fujikawa, T. (2018). Effect of temperature on fuel adhesion under spray-wall impingement condition. Fuel, 234, 56–65. https://doi.org/10.1016/j.fuel.2018.07.021 DOI: https://doi.org/10.1016/j.fuel.2018.07.021

Mahmud, R., Kurisu, T., Nishida, K., Ogata, Y., Kanzaki, J., & Tadokoro, T. (2019). Experimental study on flat-wall impinging spray flame and its heat flux on wall under diesel engine–like condition: First report—effect of impingement distance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(8), 2187–2202. https://doi.org/10.1177/0954407018778153 DOI: https://doi.org/10.1177/0954407018778153

Nufus, T. H., Hermawan, W., Setiawan, R. P. A., & Tambunan, A. H. (2018). Study of Electromagnetic Field Effects on the Characteristics of Diesel and Biodiesel Fuel Spray. Jurnal Keteknikan Pertanian, 6(1), 1–8. https://doi.org/10.19028/jtep.06.1.99-106 DOI: https://doi.org/10.19028/jtep.06.1.101-108

Perine, J., Anderson, J. C., Kruger, G. R., Abi-Akar, F., & Overmyer, J. (2021). Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. Science of the Total Environment, 772. https://doi.org/10.1016/j.scitotenv.2020.144808 DOI: https://doi.org/10.1016/j.scitotenv.2020.144808

Pischke, P., Martin, D., & Kneer, R. (2010). COMBINED SPRAY MODEL FOR GASOLINE DIRECT INJECTION HOLLOW-CONE SPRAYS. Dalam Atomization and Sprays (Vol. 20, Nomor 4). DOI: https://doi.org/10.1615/AtomizSpr.v20.i4.60

Solomatin, Y., Shlegel, N. E., & Strizhak, P. A. (2019). Atomization of promising multicomponent fuel droplets by their collisions. Fuel, 255. https://doi.org/10.1016/j.fuel.2019.115751 DOI: https://doi.org/10.1016/j.fuel.2019.115751

Tareq, M. M., Dafsari, R. A., Jung, S., & Lee, J. (2020). Effect of the physical properties of liquid and alr on the spray characteristics of a pre-filming airblast nozzle. International Journal of Multiphase Flow, 126. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103240 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103240

Tekgül, B., Kahila, H., Kaario, O., & Vuorinen, V. (2020). Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures. Combustion and Flame, 215, 51–65. https://doi.org/10.1016/j.combustflame.2020.01.017 DOI: https://doi.org/10.1016/j.combustflame.2020.01.017

Yamagishi, K., Onuma, Y., Ohara, S., Hasegawa, K., Kojima, K., Shirai, T., Kihara, T., Tsuru, K., & Naitoh, K. (2016). Computations and Experiments of Single-Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve. SAE Technical Papers, 2016-Octobeer. https://doi.org/10.4271/2016-01-2334 DOI: https://doi.org/10.4271/2016-01-2334

Yang, S., Li, X., Hung, D. L. S., & Xu, M. (2018). Characteristics and correlation of nozzle internal flow and jet breakup under flash boiling conditions. International Journal of Heat and Mass Transfer, 127, 959–969. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.109 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.109

You, M., & Arteel, G. E. (2019). Effect of ethanol on lipid metabolism. Dalam Journal of Hepatology (Vol. 70, Nomor 2, hlm. 237–248). Elsevier B.V. https://doi.org/10.1016/j.jhep.2018.10.037 DOI: https://doi.org/10.1016/j.jhep.2018.10.037

Downloads

Published

2024-01-28

How to Cite

Ilminnafik, N., Dimas Endrawan, P., M Fahrur Rozy, H., Muh. Nurkoyim, K., & Danang, Y. (2024). Karakteristik Semburan Bahan Bakar Aviation Gasoline dengan Nozzle Pesawat Cessna 172S. Journal of Mechanical Engineering, 1(1), 9–22. https://doi.org/10.47134/jme.v1i1.2182

Issue

Section

Articles