Pengembangan Acetylated Cellulose Nanofibers dari Microcrystalline Cellulose: Studi Perubahan Gugus Fungsi dan Indeks Kristalinitas melalui Asetilasi dan Nanofibrilasi

Authors

DOI:

https://doi.org/10.47134/jme.v1i1.2192

Keywords:

Cellulose Nanofiber, Asetilasi, High-Speed Blender

Abstract

Cellulose nanofiber (CNF) has promising potential as a reinforcement in polymer matrix nanocomposites. CNF is polar or hydrophilic due to having many hydroxyl groups. When CNF particles are combined with a non-polar polymer matrix, the CNF is difficult to distribute evenly and tends to agglomerate due to differences in polarity so that the strengthening effect of CNF is limited. To overcome this problem, it is necessary to chemically modify the CNF surface. Acetylation is one of the most widely used CNF surface modification methods to increase the compatibility between a non-polar polymer matrix and CNF. Through the acetylation process, some of the hydroxyl groups of CNF are replaced with acetyl groups which are hydrophobic. Furthermore, the CNF resulting from the acetylation process is known as acetylated CNF (acetylated cellulose nanofibers or ACNF). The acetylation process is carried out by first mixing microcrystalline cellulose (MCC) particles into 75 mL of acetic anhydride solution. Next, the mixture was stirred using a high-speed blender for 30 minutes for the MCC nanofibrillation process to occur. In this research, the influence of acetylation and nanofibrillation processes on the characteristics of ACNF was studied through studying chemical structure changes using ATR-FTIR and crystallinity index using XRD. The results of the ATR-FTIR analysis show that there are 3 new peaks in the ACNF spectrum, namely at 1720, 1369 and 1203 cm-1, which proves that there is a change in the structure of cellulose after being given acetylation treatment. The results of XRD show that surface treatment of acetylation and nanofibrillation with a high-speed blender increases the ACNF crystallinity index value by 82.53%. Overall, the resulting ACNF has great potential as a reinforcement for polymer matrix nanocomposites.

References

Boufi, S., dan Chaker, A. (2016). Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Industrial Crops and Products, 93, 39–47. https://doi.org/10.1016/j.indcrop.2016.05.030 DOI: https://doi.org/10.1016/j.indcrop.2016.05.030

Carrillo, C. A., Laine, J., dan Rojas, O. J. (2014). Microemulsion Systems for Fiber Deconstruction into Cellulose Nanofibrils. ACS Applied Materials & Interfaces, 6(24), 22622–22627. https://doi.org/10.1021/am5067332 DOI: https://doi.org/10.1021/am5067332

Chaker, A., Mutjé, P., Vilar, M. R., dan Boufi, S. (2014). Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose, 21(6), 4247–4259. https://doi.org/10.1007/s10570-014-0454-5 DOI: https://doi.org/10.1007/s10570-014-0454-5

Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A. N., Mangalam, A., Simonsen, J., … Peijs, T. (2010). Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1–33. https://doi.org/10.1007/s10853-009-3874-0 DOI: https://doi.org/10.1007/s10853-009-3874-0

El-Sakhawy, M., Kamel, S., Salama, A., dan Tohamy, H.-A. S. (2018). PREPARATION AND INFRARED STUDY OF CELLULOSE BASED AMPHIPHILIC MATERIALS. Dalam CELLULOSE CHEMISTRY AND TECHNOLOGY Cellulose Chem. Technol (Vol. 52, Nomor 4).

French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 21(2), 885–896. https://doi.org/10.1007/s10570-013-0030-4 DOI: https://doi.org/10.1007/s10570-013-0030-4

Gou, G., Wang, Q., Xie, W., Cao, J., Jiang, M., He, J., dan Zhou, Z. (2018). Assessment of Instant Catapult Steam Explosion Treatment on Rice Straw for Isolation of High Quality Cellulose. BioResources, 13(2). https://doi.org/10.15376/biores.13.2.2328-2341 DOI: https://doi.org/10.15376/biores.13.2.2328-2341

Haleem, N., Arshad, M., Shahid, M., dan Tahir, M. A. (2014). Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers, 113, 249–255. https://doi.org/10.1016/j.carbpol.2014.07.023 DOI: https://doi.org/10.1016/j.carbpol.2014.07.023

Hao, W., Wang, M., Zhou, F., Luo, H., Xie, X., Luo, F., dan Cha, R. (2020). A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydrate Polymers, 243, 116466. https://doi.org/10.1016/j.carbpol.2020.116466 DOI: https://doi.org/10.1016/j.carbpol.2020.116466

Ho, T. T. T., Abe, K., Zimmermann, T., dan Yano, H. (2015). Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose, 22(1), 421–433. https://doi.org/10.1007/s10570-014-0518-6 DOI: https://doi.org/10.1007/s10570-014-0518-6

Kuhnt, T., dan Camarero-Espinosa, S. (2021). Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers, 252, 117159. https://doi.org/10.1016/j.carbpol.2020.117159 DOI: https://doi.org/10.1016/j.carbpol.2020.117159

Mashkour, M., Kimura, T., Kimura, F., Mashkour, M., dan Tajvidi, M. (2014). Tunable Self-Assembly of Cellulose Nanowhiskers and Polyvinyl Alcohol Chains Induced by Surface Tension Torque. Biomacromolecules, 15(1), 60–65. https://doi.org/10.1021/bm401287s DOI: https://doi.org/10.1021/bm401287s

Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Ifuku, S., dan Yano, H. (2006). Property enhancement of optically transparent bionanofiber composites by acetylation. Applied Physics Letters, 89(23). https://doi.org/10.1063/1.2403901 DOI: https://doi.org/10.1063/1.2403901

Pastorova, I., Botto, R. E., Arisz, P. W., dan Boon, J. J. (1994). Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research, 262(1), 27–47. https://doi.org/10.1016/0008-6215(94)84003-2 DOI: https://doi.org/10.1016/0008-6215(94)84003-2

Rahimi Kord Sofla, M., Batchelor, W., Kosinkova, J., Pepper, R., Brown, R., dan Rainey, T. (2019). Cellulose nanofibres from bagasse using a high speed blender and acetylation as a pretreatment. Cellulose, 26(8), 4799–4814. https://doi.org/10.1007/s10570-019-02441-w DOI: https://doi.org/10.1007/s10570-019-02441-w

Segal, L., Creely, J. J., Martin, A. E., dan Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003 DOI: https://doi.org/10.1177/004051755902901003

Souza Da Rosa, T., Trianoski, R., Michaud, F., Belloncle, C., dan Iwakiri, S. (2022). Efficiency of Different Acetylation Methods Applied to Cellulose Fibers Waste from Pulp and Paper Mill Sludge. Journal of Natural Fibers, 19(1), 185–198. https://doi.org/10.1080/15440478.2020.1731909 DOI: https://doi.org/10.1080/15440478.2020.1731909

Sukmawan, R., Kusmono, dan Wildan, M. W. (2023). Easy production of acetylated cellulose nanofibers from sisal fibers by conventional high-speed blender. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04428-x DOI: https://doi.org/10.1007/s13399-023-04428-x

Sun, J. X., Sun, X. F., Zhao, H., dan Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331–339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008 DOI: https://doi.org/10.1016/j.polymdegradstab.2004.02.008

Tserki, V., Zafeiropoulos, N. E., Simon, F., dan Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 36(8), 1110–1118. https://doi.org/10.1016/j.compositesa.2005.01.004 DOI: https://doi.org/10.1016/j.compositesa.2005.01.004

Xie, H., King, A., Kilpelainen, I., Granstrom, M., dan Argyropoulos, D. S. (2007). Thorough Chemical Modification of Wood-Based Lignocellulosic Materials in Ionic Liquids. Biomacromolecules, 8(12), 3740–3748. https://doi.org/10.1021/bm700679s DOI: https://doi.org/10.1021/bm700679s

Zimmermann, M. V. G., da Silva, M. P., Zattera, A. J., dan Campomanes Santana, R. M. (2017). Effect of nanocellulose fibers and acetylated nanocellulose fibers on properties of poly(ethylene‐ co ‐vinyl acetate) foams. Journal of Applied Polymer Science, 134(17). https://doi.org/10.1002/app.44760 DOI: https://doi.org/10.1002/app.44760

Downloads

Published

2024-01-30

How to Cite

Kusmono, K., & Risda Azizah, H. (2024). Pengembangan Acetylated Cellulose Nanofibers dari Microcrystalline Cellulose: Studi Perubahan Gugus Fungsi dan Indeks Kristalinitas melalui Asetilasi dan Nanofibrilasi. Journal of Mechanical Engineering, 1(1), 67–75. https://doi.org/10.47134/jme.v1i1.2192

Issue

Section

Articles