Analisis Program Electronic Traffic Law Enforcement (E-TLE) pada Pengendalian Lalu Lintas di Kota Surabaya

Authors

  • Juliana Mas Kinanti Saragih Ilmu Adiministrasi Negara, Fakultas Ilmu Sosial dan Politik, Universitas Negeri Surabaya
  • Putri Indah Sari Ilmu Adiministrasi Negara, Fakultas Ilmu Sosial dan Politik, Universitas Negeri Surabaya
  • Adam Jamal Ilmu Adiministrasi Negara, Fakultas Ilmu Sosial dan Politik, Universitas Negeri Surabaya

DOI:

https://doi.org/10.47134/par.v1i2.2466

Keywords:

Electronic Traffic Law Enforcement, Analisis Program E-TLE, Lalu Lintas

Abstract

Menyadari maraknya kasus Lalu Lintas yang terjadi di Kota Surabaya seperti masyarakat yang masih kecilnya kesadaran akan tertibnya lalu lintas yang seharusnya dipatuhi oleh masyarakat Kota Surabaya seperti Pada saat mengemudi mobil tidak memakai seat belt atau bermain gadget saat menyetir, bahkan masih ada masyarakat yang mengendarai sepeda motor tanpa memakai helm sesuai standar SNI, berboncengan lebih dari 1 orang,  dan menerobos lampu merah. Berangkat dari permasalahan di atas yang berpengaruh pada keresahan masyarakat Kota Surabaya sehingga Polisi Resor Besar (Polrestabes) Kota Surabaya pada Tahun 2017 dengan Dinas Perhubungan Kota Surabaya mengembangkan metode pelayanan tilang secara elektronik yang dikenal sebagai E-TLE (Electrinoc Traffic Law Enforcement) yang menggunakan fasilitas kamera CCTV untuk meningkatkan manajemen lalu lintas dan mengurangi angka kecelakaan di Kota Surabaya. Tujuan dari penulisan ini ialah mengetahui apakah program elektronik mendeskripsikan kebijakan program E-TLE yang ditearapkan di Kota Surabaya. Hasil Penulisan yang dilakukan oleh peneliti ialah pengetahuan mengenai pengertian program elektronik tilang, aturan yang ditetapkan, serta mengetahui mengapa perlu ditetapkannya E-TLE di Kota Surabaya. Metode yang digunakan ialah Studi literatur menganalisis data menggunakan data yang sudah ada dan dapat digunakan.

References

Adi, K. (2021). Design and implementation of traffic violation detection systems with deep learning to support electronic traffic law enforcement (e-TLE). ARPN Journal of Engineering and Applied Sciences, 16(10), 1062–1070.

Anggia, M. F. (2022). Compliance and Awareness as Mediation Variables on the Influence of Utility and Trust of Electronic Traffic Law Enforcement on the Traffic Habit. WSEAS Transactions on Business and Economics, 19, 421–431. https://doi.org/10.37394/23207.2022.19.38 DOI: https://doi.org/10.37394/23207.2022.19.38

Chen, C. (2020). Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 3414–3421. DOI: https://doi.org/10.1609/aaai.v34i04.5744

Chu, T. (2020). Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1086–1095. https://doi.org/10.1109/TITS.2019.2901791 DOI: https://doi.org/10.1109/TITS.2019.2901791

Dahlan, M. (2023). ELECTRONIC TRAFFIC LAW ENFORCEMENT POLICY WITHIN THE FRAMEWORK OF LEGAL CERTAINTY. Petita: Jurnal Kajian Ilmu Hukum Dan Syariah, 8(2), 275–289. https://doi.org/10.22373/petita.v8i2.176 DOI: https://doi.org/10.22373/petita.v8i2.176

Fansuri, A. (2016). Sistem Tilang Elektronik terhadap Pelanggar Lalu Lintas Berdasarkan Perma Nomor 12 Tahun 2016. Jurnal Hukum Islam Dan Pranata Sosial.

Guo, Q. (2019). Urban traffic signal control with connected and automated vehicles: A survey. Transportation Research Part C: Emerging Technologies, 101, 313–334. https://doi.org/10.1016/j.trc.2019.01.026 DOI: https://doi.org/10.1016/j.trc.2019.01.026

Hasmita. (2021). Efektivitas Penerapan Sistem Electronic Traffic Law Enforcement (ETLE) Melalui Pengawasan CCTV Lalu Lintas Dalam Upaya Penertiban Pengguna Jalan Di Kota Makassar. https://repository.unhas.ac.id

Ika Devi Lestari, D. W. (2020). Inovasi Program Electronic Traffic Law Enforcement (E-TLE). https://pdfs.semanticscholar.org DOI: https://doi.org/10.33005/paj.v2i2.54

Liang, X. (2019). A Deep Reinforcement Learning Network for Traffic Light Cycle Control. IEEE Transactions on Vehicular Technology, 68(2), 1243–1253. https://doi.org/10.1109/TVT.2018.2890726 DOI: https://doi.org/10.1109/TVT.2018.2890726

Mindarti, L. I. (2018). Model Inovasi Pelayanan Kesehatan Melalui Program Gerakan Serentak Keluarga Siaga (Gerak Kasi) (Studi Pada Puskesmas Bades Kecamatan Pasira Kabupaten Lumajang). Jurnal Dinamika Governance FISIP UPN “Veteran” Jatim. DOI: https://doi.org/10.33005/jdg.v8i2.1173

Moch. Rizky Ekandana, T. (2022). Implementasi Program Electronic Traffic Law Enforcement (E-TLE) di Kota Surabaya. https://ejournal.unesa.ac.id

Ning, Z. (2021). Joint Computing and Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5201–5212. https://doi.org/10.1109/TITS.2020.2970276 DOI: https://doi.org/10.1109/TITS.2020.2970276

Pananrangi, M. (2019). Inovasi Kebijakan Publik Dalam Perpektif Administrasi Publik. Jurnal Meraja.

Rahmat, A. F. (2021). Delivering Artificial Intelligence for Electronic Traffic Law Enforcement in Yogyakarta Region: Current Effort and Future Challenges. IOP Conference Series: Earth and Environmental Science, 717(1). https://doi.org/10.1088/1755-1315/717/1/012016 DOI: https://doi.org/10.1088/1755-1315/717/1/012016

Sakti1, H. A. A. (2024). Pelaksanaan Sistem Electronic Traffic Law Enforcement (E-TLE) Menggunakan Pengawasan CCTV Lalu Lintas Dalam Upaya Penertiban Pengguna Jalan Di Kota Surabaya Pusat. https://ojs.daarulhuda.or.id

Saleem, M. (2022). Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egyptian Informatics Journal, 23(3), 417–426. https://doi.org/10.1016/j.eij.2022.03.003 DOI: https://doi.org/10.1016/j.eij.2022.03.003

Setiadi, G. M. (2023). A Systematic Literature Review: The Effectiveness of ANPR for Electronic Law Traffic Enforcement. Proceedings - 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System: Responsible Technology for Sustainable Humanity, ICE3IS 2023, 127–132. https://doi.org/10.1109/ICE3IS59323.2023.10335292 DOI: https://doi.org/10.1109/ICE3IS59323.2023.10335292

Siti Zubaidah, N. M. (2019). Analisis Pelaksanaan Electronic Traffic Law Enforcement Dalam Upaya Penegakan Hukum Lalu Lintas (Studi Kasus Polrestabes Makassar). https://ejournal.iainpalopo.ac.id DOI: https://doi.org/10.24256/alw.v4i2.1772

Tan, T. (2020). Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE Transactions on Cybernetics, 50(6), 2687–2700. https://doi.org/10.1109/TCYB.2019.2904742 DOI: https://doi.org/10.1109/TCYB.2019.2904742

Wang, Y. (2020). Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Science of the Total Environment, 731. https://doi.org/10.1016/j.scitotenv.2020.139133 DOI: https://doi.org/10.1016/j.scitotenv.2020.139133

Wei, H. (2019a). Colight: Learning network-level cooperation for traffic signal control. International Conference on Information and Knowledge Management, Proceedings, 1913–1922. https://doi.org/10.1145/3357384.3357902 DOI: https://doi.org/10.1145/3357384.3357902

Wei, H. (2019b). Presslight: Learning Max pressure control to coordinate traffic signals in arterial network. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1290–1298. https://doi.org/10.1145/3292500.3330949 DOI: https://doi.org/10.1145/3292500.3330949

Wu, T. (2020). Multi-Agent Deep Reinforcement Learning for Urban Traffic Light Control in Vehicular Networks. IEEE Transactions on Vehicular Technology, 69(8), 8243–8256. https://doi.org/10.1109/TVT.2020.2997896 DOI: https://doi.org/10.1109/TVT.2020.2997896

Wu, Y. (2019). Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus. Applied Energy, 247, 454–466. https://doi.org/10.1016/j.apenergy.2019.04.021 DOI: https://doi.org/10.1016/j.apenergy.2019.04.021

Xu, B. (2019). Cooperative Method of Traffic Signal Optimization and Speed Control of Connected Vehicles at Isolated Intersections. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1390–1403. https://doi.org/10.1109/TITS.2018.2849029 DOI: https://doi.org/10.1109/TITS.2018.2849029

Zanuardi, A., & &. (2018). Analisa Karakteristik Kecelakaan Lalu Lintas di Jalan Ahmad Yani Surabaya melalui Pendekatan Knowledge Discovery in Database. Jurnal Manajemen Aset Infrastruktur & Fasilitas. DOI: https://doi.org/10.12962/j26151847.v2i1.3767

Zheng, G. (2019). Learning phase competition for traffic signal control. International Conference on Information and Knowledge Management, Proceedings, 1963–1972. https://doi.org/10.1145/3357384.3357900 DOI: https://doi.org/10.1145/3357384.3357900

Zhu, F. (2020). Parallel Transportation Systems: Toward IoT-Enabled Smart Urban Traffic Control and Management. IEEE Transactions on Intelligent Transportation Systems, 21(10), 4063–4071. https://doi.org/10.1109/TITS.2019.2934991 DOI: https://doi.org/10.1109/TITS.2019.2934991

Downloads

Published

2024-05-20

How to Cite

Saragih, J. M. K., Sari, P. I., & Jamal, A. (2024). Analisis Program Electronic Traffic Law Enforcement (E-TLE) pada Pengendalian Lalu Lintas di Kota Surabaya. Indonesian Journal of Public Administration Review, 1(2), 10. https://doi.org/10.47134/par.v1i2.2466

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.