A Simulasi Serangan Denial of Service (DoS) menggunakan Hping3 melalui Kali Linux

Authors

  • Wanda Haniyah Tenologi Rekayasa Komputer, Sekolah Vokasi, Institut Pertanian Bogor
  • Muhammad Caesar Hidayat Teknologi Rekayasa Komputer, Sekolah Vokasi, Institut Pertanian Bogor
  • Zidan Febrian Indra Putra Teknologi Rekayasa Komputer, Sekolah Vokasi, Institut Pertanian Bogor
  • Veto Adi Pertama Teknologi Rekayasa Komputer, Sekolah Vokasi, Institut Pertanian Bogor
  • Aep Setiawan Teknologi Rekayasa Komputer, Sekolah Vokasi, Institut Pertanian Bogor

DOI:

https://doi.org/10.47134/pjise.v1i2.2654

Keywords:

Denial of Service (DoS), HPING3, Distributed Denial of Service (DDoS), WireShark

Abstract

Perkembangan teknologi yang semakin maju semakin meningkat sampai saat ini, membuat protokol internet yang mencapai batas kerentanannya, membuat berbagai upaya penelitian yang bertujuan untuk merancang potensi terhadap generasi arsitektur internet. Walaupun ada beberapa perbedaan dalam ruang lingkupnya tetapi ada usaha yang dilakukan untuk meminimalisir keamanan dan privasi terhadap protokol internet. Ketahanan serangan untuk Denial of Service (DoS) yang cukup menggagu internet saat ini merupakan suatu masalah besar yang harus disikapi dalam mendesain arsitektur baru dan layak untuk mendapatkan perhatian penuh. Denial of Service (DoS) juga merupakan salah satu bentuk serang yang sering digunakan oleh para hacker, Denial of Service (DoS) sebuah serangan dengan berbagai serangan untuk menghabiskan resource yang ada dari target sehingga target tidak dapat mengatasi sebuah permintaan atau request.

References

Ali, M. H. (2022). Threat Analysis and Distributed Denial of Service (DDoS) Attack Recognition in the Internet of Things (IoT). Electronics (Switzerland), 11(3). https://doi.org/10.3390/electronics11030494 DOI: https://doi.org/10.3390/electronics11030494

Aslam, M. (2022). Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT†. Sensors, 22(7). https://doi.org/10.3390/s22072697 DOI: https://doi.org/10.3390/s22072697

Beitollahi, H., & Deconinck, G. (2012). Analyzing Well-Known Countermeasures against Distributed Denial of Service Attacks. Computer Communications, 35(11), 1312-1332. doi:10.1016/j.comcom.2012.04.004 DOI: https://doi.org/10.1016/j.comcom.2012.04.008

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2015). An Empirical Evaluation of Information Metrics for Low-Rate and High-Rate DDoS Attack Detection. Pattern Recognition Letters, 51, 1-7. doi:10.1016/j.patrec.2014.08.019 DOI: https://doi.org/10.1016/j.patrec.2014.07.019

Douligeris, C., & Mitrokotsa, A. (2004). DDoS Attacks and Defense Mechanisms: Classification and State-of-the-Art. Computer Networks, 44(5), 643-666. doi:10.1016/j.comnet.2003.10.003 DOI: https://doi.org/10.1016/j.comnet.2003.10.003

Floyd, S., & Kohler, E. (2003). Internet Research Needs Better Models. Proceedings of the 1st Workshop on Hot Topics in Networks (HotNets-I), 29-34. doi:10.1145/946526.946530 DOI: https://doi.org/10.1145/774763.774767

Ge, X. (2023). Resilient and Safe Platooning Control of Connected Automated Vehicles Against Intermittent Denial-of-Service Attacks. IEEE/CAA Journal of Automatica Sinica, 10(5), 1234–1251. https://doi.org/10.1109/JAS.2022.105845 DOI: https://doi.org/10.1109/JAS.2022.105845

Hu, Z. (2022). Resilient Distributed Fuzzy Load Frequency Regulation for Power Systems Under Cross-Layer Random Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 52(4), 2396–2406. https://doi.org/10.1109/TCYB.2020.3005283 DOI: https://doi.org/10.1109/TCYB.2020.3005283

Hussain, A., Heidemann, J., & Papadopoulos, C. (2003). A Framework for Classifying Denial of Service Attacks. Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM '03), 99-110. doi:10.1145/863955.863973 DOI: https://doi.org/10.1145/863965.863968

Islam, U. (2022). Detection of Distributed Denial of Service (DDoS) Attacks in IOT Based Monitoring System of Banking Sector Using Machine Learning Models. Sustainability (Switzerland), 14(14). https://doi.org/10.3390/su14148374 DOI: https://doi.org/10.3390/su14148374

Joshi, A., & Sharma, S. (2020). Detection and Analysis of DoS Attacks Using Wireshark. International Journal of Network Security & Its Applications (IJNSA), 12(1), 25-35. doi:10.5121/ijnsa.2020.12103

Kumar, S., & Selvakumar, S. (2011). Detection of Distributed Denial of Service Attacks Using an Ensemble of Adaptive and Hybrid Neuro-Fuzzy Systems. Computer Communications, 34(11), 1328-1341. doi:10.1016/j.comcom.2011.01.013 DOI: https://doi.org/10.1016/j.comcom.2011.01.012

Hariyadi, D., Santoso, I. P., & Saputra, R. (2019). Implementasi Proteksi Client-Side Pada Private Cloud Storage Nextcloud. Jurnal Manajemen Informatika Dan Sistem Informasi, 2(1), 16. https://doi.org/10.36595/misi.v2i1.65 DOI: https://doi.org/10.36595/misi.v2i1.65

Long, J., & Sookhak, M. (2016). Detecting Application Layer DDoS Attacks with Data Stream Mining. Journal of Network and Computer Applications, 66, 175-191. doi:10.1016/j.jnca.2016.01.002 DOI: https://doi.org/10.1016/j.jnca.2016.01.002

Mihoub, A. (2022). Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Computers and Electrical Engineering, 98. https://doi.org/10.1016/j.compeleceng.2022.107716 DOI: https://doi.org/10.1016/j.compeleceng.2022.107716

Mirkovic, J., & Reiher, P. (2004). A Taxonomy of DDoS Attack and DDoS Defense Mechanisms. ACM SIGCOMM Computer Communications Review, 34(2), 39-53. doi:10.1145/997150.997156 DOI: https://doi.org/10.1145/997150.997156

Peng, C. (2022). Stochastic Event-Triggered H∞ Control for Networked Systems Under Denial of Service Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7), 4200–4210. https://doi.org/10.1109/TSMC.2021.3090024 DOI: https://doi.org/10.1109/TSMC.2021.3090024

Peng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of Network-Based Defense Mechanisms Countering the DoS and DDoS Problems. ACM Computing Surveys (CSUR), 39(1), 3. doi:10.1145/1216370.1216373 DOI: https://doi.org/10.1145/1216370.1216373

Satrya, G., & Haryanto, E. T. (2017). Analyzing the Impact of DDoS Attacks on Network Performance. Journal of Computer Networks and Communications, 2017, Article ID 5814512. doi:10.1155/2017/5814512

Singh, A. (2022). Distributed Denial-of-Service (DDoS) Attacks and Defense Mechanisms in Various Web- Enabled Computing Platforms: Issues, Challenges, and Future Research Directions. International Journal on Semantic Web and Information Systems, 18(1). https://doi.org/10.4018/IJSWIS.297143 DOI: https://doi.org/10.4018/IJSWIS.297143

Sulaiman, S., Mahmod, R., & Ghani, A. A. A. (2018). Detection and Mitigation of SYN Flooding Attacks Using Fuzzy Logic. Journal of Network and Computer Applications, 104, 78-93. doi:10.1016/j.jnca.2017.11.004 DOI: https://doi.org/10.1016/j.jnca.2017.11.004

Wang, H., Zhang, D., & Shin, K. G. (2002). Detecting SYN Flooding Attacks. Proceedings of IEEE INFOCOM 2002, 3, 1530-1539. doi:10.1109/INFCOM.2002.1019408 DOI: https://doi.org/10.1109/INFCOM.2002.1019408

Wang, X. (2022). Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case. International Journal of Robust and Nonlinear Control, 32(5), 2760–2779. https://doi.org/10.1002/rnc.5831 DOI: https://doi.org/10.1002/rnc.5831

Xiao, S. (2022). Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 52(11), 12003–12015. https://doi.org/10.1109/TCYB.2021.3074318 DOI: https://doi.org/10.1109/TCYB.2021.3074318

Yang, X., Usynin, A., & Hines, J. W. (2006). Anomaly-Based Intrusion Detection for SCADA Systems. Proceedings of the 5th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human Machine Interface Technology, 12(1), 40-45. doi:10.1109/NPCI.2006.4773936

Zeidanloo, H. R., Shooshtari, M. J., Safari, M., Zamani, M., & Nikray, M. (2010). A Taxonomy of Botnet Detection Techniques. Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology, 2, 158-162. doi:10.1109/ICCSIT.2010.5563691 DOI: https://doi.org/10.1109/ICCSIT.2010.5563555

Downloads

Published

2024-06-11

How to Cite

Haniyah, W., Hidayat, M. C., Putra, Z. F. I., Pertama, V. A., & Setiawan, A. (2024). A Simulasi Serangan Denial of Service (DoS) menggunakan Hping3 melalui Kali Linux. Journal of Internet and Software Engineering, 1(2), 8. https://doi.org/10.47134/pjise.v1i2.2654

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 

Similar Articles

You may also start an advanced similarity search for this article.