A Simulasi Serangan Denial of Service (DoS) menggunakan Hping3 melalui Kali Linux
DOI:
https://doi.org/10.47134/pjise.v1i2.2654Keywords:
Denial of Service (DoS), HPING3, Distributed Denial of Service (DDoS), WireSharkAbstract
Perkembangan teknologi yang semakin maju semakin meningkat sampai saat ini, membuat protokol internet yang mencapai batas kerentanannya, membuat berbagai upaya penelitian yang bertujuan untuk merancang potensi terhadap generasi arsitektur internet. Walaupun ada beberapa perbedaan dalam ruang lingkupnya tetapi ada usaha yang dilakukan untuk meminimalisir keamanan dan privasi terhadap protokol internet. Ketahanan serangan untuk Denial of Service (DoS) yang cukup menggagu internet saat ini merupakan suatu masalah besar yang harus disikapi dalam mendesain arsitektur baru dan layak untuk mendapatkan perhatian penuh. Denial of Service (DoS) juga merupakan salah satu bentuk serang yang sering digunakan oleh para hacker, Denial of Service (DoS) sebuah serangan dengan berbagai serangan untuk menghabiskan resource yang ada dari target sehingga target tidak dapat mengatasi sebuah permintaan atau request.
References
Ali, M. H. (2022). Threat Analysis and Distributed Denial of Service (DDoS) Attack Recognition in the Internet of Things (IoT). Electronics (Switzerland), 11(3). https://doi.org/10.3390/electronics11030494 DOI: https://doi.org/10.3390/electronics11030494
Aslam, M. (2022). Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT†. Sensors, 22(7). https://doi.org/10.3390/s22072697 DOI: https://doi.org/10.3390/s22072697
Beitollahi, H., & Deconinck, G. (2012). Analyzing Well-Known Countermeasures against Distributed Denial of Service Attacks. Computer Communications, 35(11), 1312-1332. doi:10.1016/j.comcom.2012.04.004 DOI: https://doi.org/10.1016/j.comcom.2012.04.008
Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2015). An Empirical Evaluation of Information Metrics for Low-Rate and High-Rate DDoS Attack Detection. Pattern Recognition Letters, 51, 1-7. doi:10.1016/j.patrec.2014.08.019 DOI: https://doi.org/10.1016/j.patrec.2014.07.019
Douligeris, C., & Mitrokotsa, A. (2004). DDoS Attacks and Defense Mechanisms: Classification and State-of-the-Art. Computer Networks, 44(5), 643-666. doi:10.1016/j.comnet.2003.10.003 DOI: https://doi.org/10.1016/j.comnet.2003.10.003
Floyd, S., & Kohler, E. (2003). Internet Research Needs Better Models. Proceedings of the 1st Workshop on Hot Topics in Networks (HotNets-I), 29-34. doi:10.1145/946526.946530 DOI: https://doi.org/10.1145/774763.774767
Ge, X. (2023). Resilient and Safe Platooning Control of Connected Automated Vehicles Against Intermittent Denial-of-Service Attacks. IEEE/CAA Journal of Automatica Sinica, 10(5), 1234–1251. https://doi.org/10.1109/JAS.2022.105845 DOI: https://doi.org/10.1109/JAS.2022.105845
Hu, Z. (2022). Resilient Distributed Fuzzy Load Frequency Regulation for Power Systems Under Cross-Layer Random Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 52(4), 2396–2406. https://doi.org/10.1109/TCYB.2020.3005283 DOI: https://doi.org/10.1109/TCYB.2020.3005283
Hussain, A., Heidemann, J., & Papadopoulos, C. (2003). A Framework for Classifying Denial of Service Attacks. Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM '03), 99-110. doi:10.1145/863955.863973 DOI: https://doi.org/10.1145/863965.863968
Islam, U. (2022). Detection of Distributed Denial of Service (DDoS) Attacks in IOT Based Monitoring System of Banking Sector Using Machine Learning Models. Sustainability (Switzerland), 14(14). https://doi.org/10.3390/su14148374 DOI: https://doi.org/10.3390/su14148374
Joshi, A., & Sharma, S. (2020). Detection and Analysis of DoS Attacks Using Wireshark. International Journal of Network Security & Its Applications (IJNSA), 12(1), 25-35. doi:10.5121/ijnsa.2020.12103
Kumar, S., & Selvakumar, S. (2011). Detection of Distributed Denial of Service Attacks Using an Ensemble of Adaptive and Hybrid Neuro-Fuzzy Systems. Computer Communications, 34(11), 1328-1341. doi:10.1016/j.comcom.2011.01.013 DOI: https://doi.org/10.1016/j.comcom.2011.01.012
Hariyadi, D., Santoso, I. P., & Saputra, R. (2019). Implementasi Proteksi Client-Side Pada Private Cloud Storage Nextcloud. Jurnal Manajemen Informatika Dan Sistem Informasi, 2(1), 16. https://doi.org/10.36595/misi.v2i1.65 DOI: https://doi.org/10.36595/misi.v2i1.65
Long, J., & Sookhak, M. (2016). Detecting Application Layer DDoS Attacks with Data Stream Mining. Journal of Network and Computer Applications, 66, 175-191. doi:10.1016/j.jnca.2016.01.002 DOI: https://doi.org/10.1016/j.jnca.2016.01.002
Mihoub, A. (2022). Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Computers and Electrical Engineering, 98. https://doi.org/10.1016/j.compeleceng.2022.107716 DOI: https://doi.org/10.1016/j.compeleceng.2022.107716
Mirkovic, J., & Reiher, P. (2004). A Taxonomy of DDoS Attack and DDoS Defense Mechanisms. ACM SIGCOMM Computer Communications Review, 34(2), 39-53. doi:10.1145/997150.997156 DOI: https://doi.org/10.1145/997150.997156
Peng, C. (2022). Stochastic Event-Triggered H∞ Control for Networked Systems Under Denial of Service Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7), 4200–4210. https://doi.org/10.1109/TSMC.2021.3090024 DOI: https://doi.org/10.1109/TSMC.2021.3090024
Peng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of Network-Based Defense Mechanisms Countering the DoS and DDoS Problems. ACM Computing Surveys (CSUR), 39(1), 3. doi:10.1145/1216370.1216373 DOI: https://doi.org/10.1145/1216370.1216373
Satrya, G., & Haryanto, E. T. (2017). Analyzing the Impact of DDoS Attacks on Network Performance. Journal of Computer Networks and Communications, 2017, Article ID 5814512. doi:10.1155/2017/5814512
Singh, A. (2022). Distributed Denial-of-Service (DDoS) Attacks and Defense Mechanisms in Various Web- Enabled Computing Platforms: Issues, Challenges, and Future Research Directions. International Journal on Semantic Web and Information Systems, 18(1). https://doi.org/10.4018/IJSWIS.297143 DOI: https://doi.org/10.4018/IJSWIS.297143
Sulaiman, S., Mahmod, R., & Ghani, A. A. A. (2018). Detection and Mitigation of SYN Flooding Attacks Using Fuzzy Logic. Journal of Network and Computer Applications, 104, 78-93. doi:10.1016/j.jnca.2017.11.004 DOI: https://doi.org/10.1016/j.jnca.2017.11.004
Wang, H., Zhang, D., & Shin, K. G. (2002). Detecting SYN Flooding Attacks. Proceedings of IEEE INFOCOM 2002, 3, 1530-1539. doi:10.1109/INFCOM.2002.1019408 DOI: https://doi.org/10.1109/INFCOM.2002.1019408
Wang, X. (2022). Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case. International Journal of Robust and Nonlinear Control, 32(5), 2760–2779. https://doi.org/10.1002/rnc.5831 DOI: https://doi.org/10.1002/rnc.5831
Xiao, S. (2022). Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks. IEEE Transactions on Cybernetics, 52(11), 12003–12015. https://doi.org/10.1109/TCYB.2021.3074318 DOI: https://doi.org/10.1109/TCYB.2021.3074318
Yang, X., Usynin, A., & Hines, J. W. (2006). Anomaly-Based Intrusion Detection for SCADA Systems. Proceedings of the 5th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human Machine Interface Technology, 12(1), 40-45. doi:10.1109/NPCI.2006.4773936
Zeidanloo, H. R., Shooshtari, M. J., Safari, M., Zamani, M., & Nikray, M. (2010). A Taxonomy of Botnet Detection Techniques. Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology, 2, 158-162. doi:10.1109/ICCSIT.2010.5563691 DOI: https://doi.org/10.1109/ICCSIT.2010.5563555
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wanda Haniyah, Muhammad Caesar Hidayat, Zidan Febrian Indra Putra, Veto Adi Pertama, Aep Setiawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.