Antibiotic Resistance of Pseudomonas aeruginosa in Burns and Wounds in Baghdad and Al-Samawah City

Authors

  • Mohammed Ali Alaboudi Department of Medical Laboratories, College of Health and Medical Technology, Sawa University, Almuthana
  • Seger Abdulkhadim Seger Aljwaid Department of Medical Laboratories, College of Health and Medical Technology, Sawa University, Almuthana

DOI:

https://doi.org/10.47134/mpk.v1i2.3124

Keywords:

Pseudomonas aeruginosa, antibiotic resistance, burns, wounds

Abstract

The most prevalent pathogen in nosocomial situations remains to be pseudomonas aeruginosa. High levels of resistance to several antibiotic classes are displayed by this bacterium. Thus, the purpose of this work is to examine the multidrug-resistant P. aeruginosa bacteria that have been isolated from wound and burn infections. From burn and wound, 69 P. aeruginosa isolates were obtained. Antibiotic susceptibility testing was carried out using the conventional Kirby-Bauer disk-diffusion test method. The antibiotic resistance rate ranged between (20.28–85.5) for 69 isolates of P. aeruginosa tested. The current study revealed that P. aeruginosa isolates that higher level of resistance to Gentamicin, Cefepime, Ceftazidime Ticarcillin, Aztreonam, and also appear high sensitive to Amikacin, Imipenem, Meropenem and Ciprofloxacin. Therefore, in order to implement successful empirical medicines throughout hospital settings, it is imperative to carry out molecular epidemiology research and antibiotic surveillance.

References

Abdel, F. R., Abbas, M. K., Jaafar, F. N., & Mukhlif, M. (2016). Detection of Genome Content of Pseudomonas Aeruginosa Biofilm Formation and Resistance to Some Disinfectants and Antibiotics. Engineering and Technology Journal, 34(1 Part (B) Scientific). DOI: https://doi.org/10.30684/etj.34.1B.20

Abdul-Wahid, A., & Almohana, A. (2015). Dissemination of Aminoglycosides Resistance in Pseudomonas Aeruginosa Isolates in Al-Nasiriya Hospitals. Kufa Journal for Nursing Sciences, 5(1), 126-136. DOI: https://doi.org/10.36321/kjns.vi20151.3158

Aghazadeh, M., Hojabri, Z., Mahdian, R., Nahaei, M. R., Rahmati, M., Hojabri, T., & Pajand, O. (2014). Role of Efflux Pumps: MexAB-OprM and MexXY(-OprA), AmpC Cephalosporinase and OprD Porin in Non-Metallo-β-Lactamase Producing Pseudomonas Aeruginosa Isolated From Cystic Fibrosis and Burn Patients. Infection, Genetics and Evolution, 24, 187-192. DOI: https://doi.org/10.1016/j.meegid.2014.03.018

Ahmed, Z. (2015). Detection of Inducible Betalactamase in Pseudomonas Aeruginosa Isolated From Different Clinical Samples in Kirkuk City. Kirkuk University Journal-Scientific Studies, 10(4), 71-92. DOI: https://doi.org/10.32894/kujss.2015.124102

Al-Doory, I. A. H. (2012). A Diagnostic Study of Pseudomonas Aeruginosa Isolated From Contaminated Burns and Wounds Using Cultural and Molecular Methods (Doctoral dissertation, M. Sc. Thesis, College of Science for Women, University of Baghdad, Iraq).

Aleksiewicz, R., Kostro, K., Kostrzewski, M., Lisiecka, B., Bojarski, M., & Mucha, P. A. (2015). Percentage of CD4+, CD8+, and CD25+ T Lymphocytes in Peripheral Blood of Pigs in the Course of Experimental Burns and Necrectomy. Journal of Veterinary Research, 59(3), 401-410. DOI: https://doi.org/10.1515/bvip-2015-0059

Alhamdani, R. J. M., & Al-Luaibi, Y. Y. (2020). Detection of exoA, nan1 Genes, the Biofilm Production with the Effect of Oyster Shell and Two Plant Extracts on Pseudomonas Aeruginosa Isolated From Burn Patients and Their Surrounding Environment. Systematic Reviews in Pharmacy, 11(11).

Alhamdani, R. J. M., & Al-Luaibi, Y. Y. (2020). Detection of exoA, nan1 Genes, the Biofilm Production with the Effect of Oyster Shell and Two Plant Extracts on Pseudomonas Aeruginosa Isolated From Burn Patients and Their Surrounding Environment. Systematic Reviews in Pharmacy, 11(11).

Ali, Z., Mumtaz, N., Naz, S. A., Jabeen, N., & Shafique, M. (2015). Multi-Drug Resistant Pseudomonas Aeruginosa: A Threat of Nosocomial Infections in Tertiary Care Hospitals. Journal of Pakistan Medical Association, 65(12), 12-16.

Al-Kaisse, A. A., Al-Thwani, A. N., & Al-Segar, A. N. (2015). Incidence and Antibiotics Sensitivity of Multidrug-Resistance of Pseudomonas Aeruginosa Isolated From Burn Patients and Environmental Samples From Three Hospitals in Baghdad. Journal of Biotechnology Research Center, 9(2), 67-73. DOI: https://doi.org/10.24126/jobrc.2015.9.2.438

Al-Kazrage, H. A. (In press). Inhibition of Virulence Factors in Pseudomonas Aeruginosa Isolated From Clinical Samples Using Galardin Loaded AgPEG Nanocomposite.

Al-Mayyahi, A. W. (2018). Detection of (exoT, exoY, exo S and exoU) Genes in Pseudomonas Aeruginosa Isolate From Different Clinical Sources (Doctoral dissertation, M. Sc. Thesis Submitted to the Council of the Institute of Genetic Engineering and Biotechnology for Post Graduate Studies, University of Baghdad. 60-63).

Al-Saeedi, R. H. A., & Raheema, R. H. (2019). Molecular Diagnosis of Some Virulence Genes in Pseudomonas Aeruginosa Clinical Isolates in Wasit Province. Indian Journal of Public Health, 10(04). DOI: https://doi.org/10.5958/0976-5506.2019.00789.7

Atilla, A., Tomak, L., Katrancı, A. O., Ceylan, A., & Kılıç, S. S. (2015). Mortality Risk Factors in Burn Care Units Considering the Clinical Significance of Acinetobacter Infections. Ulus Travma Acil Cerrahi Derg, 21(1), 34-38. DOI: https://doi.org/10.5505/tjtes.2015.76814

Attiah, S. A., Majeed, G. H., & Mohammed, T. K. (2021). Molecular Detection of the exoU and toxA Genes Among Pseudomonas Aeruginosa of Patients With Burn and Wound Infection in Baghdad City. Annals of the Romanian Society for Cell Biology, 25(6), 109-122.

Brooks, G. F., Carroll, K. C., Butel, J. S., Morse, S. A., Mietzner, T. A., & Jawetz, M. (2007). Adelberg’s Medical Microbiology. Sultan Qaboos University Medical Journal, 7, 273.

Bush, K., & Jacoby, G. A. (2010). Updated Functional Classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969-976. DOI: https://doi.org/10.1128/AAC.01009-09

Che Soh, N. A., Rapi, H. S., Mohd Azam, N. S., Santhanam, R. K., Assaw, S., Haron, M. N., & Ismail, W. I. W. (2020). Acute Wound Healing Potential of Marine Worm, Diopatra Claparedii Grube, 1878 Aqueous Extract on Sprague Dawley Rats. Evidence-Based Complementary and Alternative Medicine, 2020. DOI: https://doi.org/10.1155/2020/6688084

Cox, G., Stogios, P. J., Savchenko, A., & Wright, G. D. (2015). Structural and Molecular Basis for Resistance to Aminoglycoside Antibiotics by the Adenylyltransferase ANT(2″)-Ia. MBio, 6(1), e02180-14. DOI: https://doi.org/10.1128/mBio.02180-14

Hassan, K. I., Rafik, S. A., & Mussum, K. (2012). Molecular Identification of Pseudomonas Aeruginosa Isolated From Hospitals in Kurdistan Region. Journal of Advanced Medical Research, 2(3), 90-98.

Hooper, D. C. (2001). Emerging Mechanisms of Fluoroquinolone Resistance. Emerging Infectious Diseases, 7(2), 337. DOI: https://doi.org/10.3201/eid0702.010239

Hu, Y., Li, D., Xu, L., Hu, Y., Sang, Y., Zhang, G., & Dai, H. (2021). Epidemiology and Outcomes of Bloodstream Infections in Severe Burn Patients: A Six-Year Retrospective Study. Antimicrobial Resistance and Infection Control, 10(1), 1-8. DOI: https://doi.org/10.1186/s13756-021-00969-w

Kamal, M. A., Aldin, C. I., & Husein, A. S. (2018). Prevalence Study of Pseudomonas Aeruginosa in Teaching Tikrit Hospital From Different Sources. Tikrit Journal of Pure Science, 20(4), 55-59. DOI: https://doi.org/10.25130/tjps.v20i4.1213

Lopez-Yeste, M., Xercavins, M., Lite, J., Cuchi, E., & Garau, J. (1996). Fluoroquinolone and Aminoglycoside Resistance in Chromosomal Cephalosporinase-Overproducing Gram-Negative Bacilli Strains with Inducible Beta-lactamase. Enfermedades Infecciosas Y Microbiologia Clinica, 14(4), 211-214.

Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H., & Nishino, T. (2000). Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas Aeruginosa. Antimicrobial Agents and Chemotherapy, 44(12), 3322-3327. DOI: https://doi.org/10.1128/AAC.44.12.3322-3327.2000

Naqvi, Z. A., Hashmi, K. H., Rizwan, Q. M., & Kharal, S. A. (2005). Multidrug Resistant Pseudomonas Aeruginosa: A Nosocomial Infection Threat in Burn Patients. Pakistan Journal of Pharmacology, 22(2), 9-15.

Othman, N., Babakir-Mina, M., Noori, C. K., & Rashid, P. Y. (2014). Pseudomonas Aeruginosa Infection in Burn Patients in Sulaimaniyah, Iraq: Risk Factors and Antibiotic Resistance Rates. The Journal of Infection in Developing Countries, 8(11), 1498-1502. DOI: https://doi.org/10.3855/jidc.4707

Oumeri, M. M. Q., & Yassin, N. A. (2021). Molecular Characterization of Some Carbapenem-Resistance Genes Among Pseudomonas Aeruginosa Isolated From Wound and Burn Infections in Duhok City, Iraq. Journal of Duhok University, 24(1), 136-144. DOI: https://doi.org/10.26682/sjuod.2021.24.1.15

Qader, M. K., Solmaz, H., & Merza, N. S. (2021). Molecular Characterization of Virulence Factors Among Antibacterial Resistant Pseudomonas Aeruginosa Isolated From Burn Infections From Duhok and Erbil Hospitals, Iraq. Journal of Duhok University, 24(1), 1-9. DOI: https://doi.org/10.26682/sjuod.2021.24.1.1

Risan, F. A., Salih, M. K., & Salih, T. A. (2020). Estimation of IL-17A and IFN-y in the Burn of Patients that Afflicted by Different Bacterial Types. International Journal of Psychosocial Rehabilitation, 24(05). DOI: https://doi.org/10.37200/IJPR/V24I5/PR201870

Wagner, S., Sommer, R., Hinsberger, S., Lu, C., Hartmann, R. W., Empting, M., & Titz, A. (2016). Novel Strategies for the Treatment of Pseudomonas Aeruginosa Infections. Journal of Medicinal Chemistry, 59(13), 5929-5969. DOI: https://doi.org/10.1021/acs.jmedchem.5b01698

Downloads

Published

2024-07-31

How to Cite

Alaboudi, M. A., & Aljwaid, S. A. S. (2024). Antibiotic Resistance of Pseudomonas aeruginosa in Burns and Wounds in Baghdad and Al-Samawah City. Manajemen Pelayanan Kesehatan, 1(2), 10. https://doi.org/10.47134/mpk.v1i2.3124

Issue

Section

Articles

Most read articles by the same author(s)