Effect of Immunotropic Substances on the Functional Activity of Neutrophils

Authors

  • Seger Abdulkhadim Seger Aljwaid Department of Medical Laboratories, College of Health and Medical Technology, Sawa University, Almuthana
  • Mohammed Ali Alaboudi Department of Medical Laboratories, College of Health and Medical Technology, Sawa University, Almuthana

DOI:

https://doi.org/10.47134/mpk.v1i2.3122

Keywords:

immunotropic substances, functional activity, neutrophils

Abstract

This work investigates the effects of amino acids, in particular zinc aspartate and arginine, on neutrophil functional activity in the presence of oxidative stress. Amino acids are recognized to be beneficial for a number of body processes, but little is known about how they regulate neutrophil activity. We measured immunoglobulin levels pre- and post-treatment, neutrophil metabolic activity, and phagocyte activity in a sample of patients with chronic renal illness, aged 20 to 60. The immunological status significantly improved, as evidenced by higher neutrophil metabolic activity and phagocytosis indices. These results imply that taking supplements of amino acids may improve immune responses, which may have therapeutic ramifications for the treatment of chronic inflammatory diseases.

References

Adler, A. J., Marsh, D. W., Yochum, G. S., Guzzo, J. L., Nigam, A., Nelson, W. G., & Pardoll, D. M. (1998). CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. The Journal of Experimental Medicine, 187, 1555-1564. DOI: https://doi.org/10.1084/jem.187.10.1555

Belz, G. T., Behrens, G. M., Smith, C. M., Miller, J. F., Jones, C., Lejon, K., Fathman, C. G., Mueller, S. N., Shortman, K., Carbone, F. R., & Heath, W. R. (2002). The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. The Journal of Experimental Medicine, 196, 1099-1104. DOI: https://doi.org/10.1084/jem.20020861

Fuchs, E. J., & Matzinger, P. (1992). B cells turn off virgin but not memory T cells. Science, 258, 1156-1159. DOI: https://doi.org/10.1126/science.1439825

Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., & Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual Review of Immunology, 20, 621-667. DOI: https://doi.org/10.1146/annurev.immunol.20.100301.064828

Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R., & Villadangos, J. A. (2004). Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunological Reviews, 199, 9-26. DOI: https://doi.org/10.1111/j.0105-2896.2004.00142.x

Huang, F. P., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D., & MacPherson, G. G. (2000). A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. The Journal of Experimental Medicine, 191, 435-444. DOI: https://doi.org/10.1084/jem.191.3.435

Itano, A. A., & Jenkins, M. K. (2003). Antigen presentation to naive CD4 T cells in the lymph node. Nature Immunology, 4, 733-739. DOI: https://doi.org/10.1038/ni957

Lassila, O., Vainio, O., & Matzinger, P. (1988). Can B cells turn on virgin T cells? Nature, 334, 253-255. DOI: https://doi.org/10.1038/334253a0

Miyazaki, T., Suzuki, G., & Yamamura, K. (1993). The role of macrophages in antigen presentation and T cell tolerance. International Immunology, 5, 1023-1033. DOI: https://doi.org/10.1093/intimm/5.9.1023

Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B., Chandler, P., Antonia, S. J., Burgess, R., Slingluff, C. L., Jr., & Mellor, A. L. (2002). Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science, 297, 1867-1870. DOI: https://doi.org/10.1126/science.1073514

Ronchese, F., & Hausmann, B. (1993). B lymphocytes in vivo fail to prime naive T cells but can stimulate antigen-experienced T lymphocytes. The Journal of Experimental Medicine, 177, 679-690. DOI: https://doi.org/10.1084/jem.177.3.679

Ronchetti, A., Rovere, P., Iezzi, G., Galati, G., Heltai, S., Protti, M. P., Garancini, M. P., Manfredi, A. A., Rugarli, C., & Bellone, M. (1999). Immunogenicity of apoptotic cells in vivo: Role of antigen load, antigen-presenting cells, and cytokines. Journal of Immunology, 163, 130-136. DOI: https://doi.org/10.4049/jimmunol.163.1.130

Scheinecker, C., McHugh, R., Shevach, E. M., & Germain, R. N. (2002). Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. The Journal of Experimental Medicine, 196, 1079-1090. DOI: https://doi.org/10.1084/jem.20020991

Steinman, R. M., Hawiger, D., & Nussenzweig, M. C. (2003). Tolerogenic dendritic cells. Annual Review of Immunology, 21, 685-711. DOI: https://doi.org/10.1146/annurev.immunol.21.120601.141040

Watson, G. A., & Lopez, D. M. (1995). Aberrant antigen presentation by macrophages from tumor-bearing mice is involved in the down-regulation of their T cell responses. Journal of Immunology, 155, 3124-3134. DOI: https://doi.org/10.4049/jimmunol.155.6.3124

Downloads

Published

2024-07-31

How to Cite

Aljwaid, S. A. S., & Alaboudi, M. A. (2024). Effect of Immunotropic Substances on the Functional Activity of Neutrophils. Manajemen Pelayanan Kesehatan, 1(2), 5. https://doi.org/10.47134/mpk.v1i2.3122

Issue

Section

Articles