Analysis of Anaerobic Digestion Installation Testing for Tofu Liquid Waste Utilization into Biogas with the Addition of Cow Manure Variations
DOI:
https://doi.org/10.47134/ijm.v1i1.2472Keywords:
Biogas, Anaerobic Digester, Tofu Liquid WasteAbstract
The purpose of this study is to convert tofu wastewater into biogas using an anaerobic digester with varying cow dung mixtures (10%, 15%, and 20%). The study method entails creating digesters including independent, dependent, and controlled variables. Variations in pH, temperature, biogas pressure, and biogas volume were detected throughout the course of a 15-day fermentation. The data show that in the 10% fluctuation, the greatest pH was on day 7 (7), whereas the highest temperature was 32°C on days 6 and 7. Biogas pressure emerged on day 6 (89.2 cmHg), resulting in a volume of 90 liters by day 15. In the 15% variation, the highest pH (7.2) occurred on day 8, with the highest temperature (34°C) on days 9 and 10. Biogas pressure began on day 5 (89.9 cmHg), with a biogas volume of 95 liters on day 15. The 20% variance resulted in the highest pH (7.4) on day 8 and the highest temperature of 35°C from days 9-11. Biogas pressure began on day 5 (90.7 cmHg), resulting in a biogas volume of 100 liters on day 15. This study sheds light on how to manage tofu waste into biogas with varying degrees of effectiveness and efficiency.
References
Abbas, Y. (2021). Recent advances in bio-based carbon materials for anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 135. https://doi.org/10.1016/j.rser.2020.110378 DOI: https://doi.org/10.1016/j.rser.2020.110378
Boljanovic, V. (2004). Sheet Metal Forming Process And Die Design. Industrial Press Inc: New York.
Budiarto. (2005). Press Tool. Departemen Pendidikan Nasional, Politeknik Manufaktur: Bandung.
Cremonez, P. A. (2021). Two-Stage anaerobic digestion in agroindustrial waste treatment:
A review. Journal of Environmental Management, 281. https://doi.org/10.1016/j.jenvman.2020.111854 DOI: https://doi.org/10.1016/j.jenvman.2020.111854
David, J. R. (1992). ASM Materials Engineering Dictionary. ASM International.
Du, M. (2021). Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Research, 188. https://doi.org/10.1016/j.watres.2020.116539 DOI: https://doi.org/10.1016/j.watres.2020.116539
Farid, A. S. (2013). Uji Produksi NDCP (Narrow Dynamic Compression Plate) Menggunakan Mesin Press. Skripsi. Universitas Gadjah Mada: Yogyakarta.
Jin, C. (2021). Anaerobic digestion: An alternative resource treatment option for food waste in China. Science of the Total Environment, 779. https://doi.org/10.1016/j.scitotenv.2021.146397 DOI: https://doi.org/10.1016/j.scitotenv.2021.146397
Karki, R. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresource
Technology, 330. https://doi.org/10.1016/j.biortech.2021.125001 DOI: https://doi.org/10.1016/j.biortech.2021.125001
Kumar, M. (2021). A critical review on biochar for enhancing biogas production from
anaerobic digestion of food waste and sludge. Journal of Cleaner Production, 305. https://doi.org/10.1016/j.jclepro.2021.127143 DOI: https://doi.org/10.1016/j.jclepro.2021.127143
Liu, X. (2021). Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Research, 189. https://doi.org/10.1016/j.watres.2020.116645 DOI: https://doi.org/10.1016/j.watres.2020.116645
Nguyen, L. N. (2021). Biomethane production from anaerobic co-digestion at wastewater
treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of the Total Environment, 765. https://doi.org/10.1016/j.scitotenv.2020.142753 DOI: https://doi.org/10.1016/j.scitotenv.2020.142753
Nguyen, V. K. (2021). Review on pretreatment techniques to improve anaerobic digestion
of sewage sludge. Fuel, 285. https://doi.org/10.1016/j.fuel.2020.119105 DOI: https://doi.org/10.1016/j.fuel.2020.119105
Osman, A. I. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20(4), 2385–2485. https://doi.org/10.1007/s10311-022-01424-x DOI: https://doi.org/10.1007/s10311-022-01424-x
Pahleviannur, M. R. (2019). Pemanfaatan Informasi Geospasial Melalui Interpretasi Citra Digital Penginderaan Jauh untuk Monitoring Perubahan Penggunaan Lahan. JPIG (Jurnal Pendidikan Dan Ilmu Geografi), 4(2), 18–26. DOI: https://doi.org/10.21067/jpig.v4i2.3267
Pahleviannur, M. R. (2022). Penentuan Prioritas Pilar Satuan Pendidikan Aman Bencana (SPAB) menggunakan Metode Analytical Hierarchy Process (AHP). Pena Persada. DOI: https://doi.org/10.31237/osf.io/6ghyz
Pahleviannur, M. R., Wulandari, D. A., Sochiba, S. L., & Santoso, R. R. (2020). Strategi Perencanaan Pengembangan Pariwisata untuk Mewujudkan Destinasi Tangguh Bencana di Wilayah Kepesisiran Drini Gunungkidul. Jurnal Pendidikan Ilmu Sosial, 29(2), 116–126. DOI: https://doi.org/10.23917/jpis.v29i2.9692
Pan, X. (2021). Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis. Water Research, 190. https://doi.org/10.1016/j.watres.2020.116774 DOI: https://doi.org/10.1016/j.watres.2020.116774
Prasetyo. (2007). Kekuatan Papan Partikel Terbuat dari Sekam Padi. Skripsi Teknik Mesin, IST AKPRIN: Yogyakarta.
Sari. (2014). Perancangan Mesin Notching Untuk Proses Sheet Metal Forming. Jurnal Teknik
Mesin, IST AKPRIN: Yogyakarta.
Sofwan, D. M. (2011). Pembuatan Press Dies Untuk Produk DCP (Dynamic Compression Plate) Pendek. Skripsi. Universitas Gadjah Mada: Yogyakarta.
Sutigno, P. (1994). Teknologi Papan Partikel Datar. Pusat Penelitian dan Pengembangan Hasil Hutan dan Sosial Ekonomi Kehutanan. Bogor.
Theryo, R. S. (2009). Teknologi Press Dies Panduan Desain. Kinisius: Jogja.
Wang, M. (2021). Magnetite-contained biochar derived from fenton sludge modulated electron transfer of microorganisms in anaerobic digestion. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123972 DOI: https://doi.org/10.1016/j.jhazmat.2020.123972
Wang, R. (2021). Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion. Bioresource Technology, 324. https://doi.org/10.1016/j.biortech.2021.124671 DOI: https://doi.org/10.1016/j.biortech.2021.124671
Wiraatmadja, S. (1995). Alsintan Pengiris dan Pemotong. Penebar Swadaya. Jakarta.
Zamri, M. F. M. A. (2021). A comprehensive review on anaerobic digestion of organic
fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137. https://doi.org/10.1016/j.rser.2020.110637 DOI: https://doi.org/10.1016/j.rser.2020.110637
Zhao, J. (2021). Effect of emerging pollutant fluoxetine on the excess sludge anaerobic digestion. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.141932 DOI: https://doi.org/10.1016/j.scitotenv.2020.141932
Zhao, W. (2021). A review of biochar in anaerobic digestion to improve biogas production:
Performances, mechanisms and economic assessments. Bioresource Technology, 341. https://doi.org/10.1016/j.biortech.2021.125797 DOI: https://doi.org/10.1016/j.biortech.2021.125797
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Prido Dwi Purboyo, A’rasy Fahruddin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.