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Abstract: Globally, there are challenges in minimizing the effects of water 

pollution and global warming everywhere. We want to apply a sensor network 

connected to an Esp32 and Tensorflow lite integrated system to map the flood 

conditions for drone-based water surface waste collection. Finally, a GSM sim 

800L Module is incorporated to notify the user about the monitored conditions, 

such as trash level and other data. An ultrasonic sensor is utilized to detect the 

water level. The outcome shows a high chance of tracking water levels and 

monitoring floods. This innovative technology allows users to receive warnings 

and be warned remotely. The Inception-v3 model on clean and unclean water 

images obtained 97% accuracy on testing USING Inception-v3, and using the 

proposed circuit diagram, a prototype is developed for possible deployment in 

such water resource region for possible operation and application is presented in 

the paper.  
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Introduction 

Sampling and monitoring water quality are essential to protecting the ecosystem 

around water. There are now severe environmental and societal issues due to water 

pollution and global warming (López-Serrano et al., 2023). Reducing these problems 

requires efficient water resource management and monitoring. Water management and its 

use have become increasingly important as cities experience substantial urban development 

and population rise (Mvongo et al., 2021). Studies using remote sensing ocean color have 

already been conducted to assess the nutrient availability, biodiversity, and water quality 

along the coast. Water-quality investigations of coastal waters have been made possible in 

recent years by Unmanned Aerial Vehicles (UAVs) outfitted with multispectral sensors. 

These UAVs were initially intended for agricultural uses. However, when applied to UAV 

photos taken over water areas, generally utilized photogrammetric algorithms are 

ineffective because the sea surface constantly changes.  
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Drones are changing how we observe the earth system and are increasingly used for 

high-resolution water quality monitoring (Greenland et al., 2019).  The global water crisis 

can be eradicated by utilizing this kind of technology, and sustainability in the water 

resources field can be assured, too. Pollution prevention and environmental protection are 

important issues for all nations worldwide. Water quality monitoring plays a crucial part in 

maintaining a healthy water environment in the hydrological climate by helping to identify 

abnormal situations promptly and providing feedback on the efficacy of the actions 

performed. In situ measurements are used in conventional water quality 

monitoring (Crispim et al., 2021).  

Traditional flood and water quality monitoring techniques' manual nature and 

absence of real-time data frequently pose limitations. Technological developments in 

Artificial Intelligence of Things (AIoT) offer novel prospects for improving these 

surveillance systems. To create an all-encompassing water quality and flood danger 

monitoring system, this article investigates the integration of drone technology with ESP32, 

TensorFlow Lite, and many sensors. The technology seeks to improve response times and 

decision-making processes by giving users accurate, up-to-date data and warnings (Zarei et 

al., 2021).  

 

Methods 

The multi-parameter detection system included a microprocessor, turbidity, total 

dissolved solids (TDS), and hydrogen potential (pH) sensors. Using the rapidly exploring 

random trees (RRT) obstacle avoidance path planning technique and the proposed layered 

hybrid improved particle swarm optimization (LHIPSO), the UAV's flight route was 

adjusted to increase sampling efficiency (Bermejo-Martín & Rodríguez-Monroy, 2020). The 

LHIPSO algorithm was compared to the dynamic adjustment (DAPSO), particle swarm 

optimization (PSO), and other algorithms in simulation trials. The simulation results 

validated the suggested algorithm's efficiency, demonstrating that the LHIPSO method had 

better global optimization capability and stability when compared to the other algorithms.  

In particular, for degraded waterways (such as rivers, lakes, and reservoirs), the 

suggested UAS-based hardware platform for water quality investigations (UASWQP) 

seems to be a viable instrument for improving environmental research operations. 

According to the initial findings, the suggested UASWQP efficiently provides real-time 

visualization of water quality components to the ThingSpeak Cloud web services (Bonetti 

et al., 2022). Additionally, gathering a sufficient water sample for in-depth examination at 

lab facilities was simple as necessary. This study aimed to investigate the predictive power 

of drone-based multispectral images for crucial water quality metrics in an intermittently 
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closed and opened lake or lagoon, or ICOLL. Temperature, salinity, pH, dissolved oxygen 

(DO), chlorophyll (CHL), turbidity, total suspended sediments (TSS), coloured dissolved 

organic matter (CDOM), green algae, cryptophytes, diatoms, blue-green algae, and total 

algal concentrations were measured during three water quality sampling campaigns 

(Mamba, 2023).  

After doing DistilM statistical studies to identify the bands that accounted for the most 

significant variation in the water quality data, linear correlations between particular 

band/band ratios and water quality measures were carried out (Berger et al., 2023). The 

authors present centimetre-scale water quality information at two distinct locations along 

the Maltese coastline, enhancing the current approximations obtained for the area from 

Sentinel-3 OLCI images at a significantly lower spatial resolution of 300 m. The Chl-a and 

TSS values determined for the regions under study fell between 0 and 3 mg/m3 and 10 and 

20 mg/m3, respectively, and were within the predicted limits. Spectral comparisons were 

also performed in addition to certain statistical computations like RMSE, MAE, or bias to 

validate the results. To address the issues above, we provide an enhanced MPP method 

(dubbed IMP-MPP) that chooses models with more filtering conditions and sample pixels 

based on clustering outcomes.  

This study used Qingshan Lake in Hangzhou City, Zhejiang Province, China, as its 

study location to assess the turbidity and suspended solids indicators (Abadi & Kelboro, 

2021). The suggested IMP-MPP algorithm analyzes and processes 45 in situ samples and 

UAV images surrounding the sampling spots in conjunction with the average value 

technique and MPP for comparison. According to the experimental findings, the optimal 

inversion model for SS that the IMP-MPP algorithm produced had a determination 

coefficient, average relative error, and comprehensive error of 0.8255, 15.08%, and 0.1981, 

respectively (Kwon & Bailey, 2019).   

Our suggested idea is to create a drone system driven by AIoT specifically designed 

to use UAV drone technology to locate flood hazards and check water quality remotely. 

With the help of this cutting-edge system, flood-related hazards may be remotely 

monitored, allowing for the early forecast of possible flood events. It also allows us to 

evaluate water quality in isolated areas, improving our comprehension of the surrounding 

environment. This system uses uncrewed aerial vehicle (UAV) technology to collect vital 

data flexibly and effectively. This helps improve flood control plans and environmental 

monitoring programs (Zhang et al., 2023). 

A. Proposed Work 

The system setup begins with a drone design and development to monitor floods and 

clean and dirty water. DIY drone technology is a step toward utilizing an AIoT-comprised 
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system for remote monitoring and alerts to conserve water-related hazards and early alerts 

in flood-related situations to local people residing in a community (Nishad & Kumar, 2022). 

The sensor network inside the drone allows users to monitor live flood-related issues 

and get notified. Computer vision using the Inception-v3 model allows for remote live 

monitoring of flood hazard conditions (Aguiar et al., 2022).  

 

B. Drone design and development 

Table 1. Drone design and development components 

Component Function 

Frame Provides structural support and 

housing for all other components. 

Motors (Brushless) Generate thrust to lift and maneuver 

the drone. 

Propellers Convert motor torque into thrust. 

Electronic Speed Controllers (ESCs) Regulate the speed of the motors 

based on control signals. 

ESP32 Microcontroller The central processing unit for 

controlling the drone’s flight 

dynamics, stability, and navigation. 

GPS Module Provides geolocation data for 

navigation and positioning. 

IMU (Inertial Measurement Unit) Measures the drone’s orientation and 

movement (including accelerometers 

and gyroscopes). 

Battery (Li-Po) Supplies power to all the drone’s 

components. 

Power Distribution Board (PDB) Distributes power from the battery to 

various components. 

Telemetry System Enables remote communication to 

monitor flight data and drone status. 

Ultrasonic Sensor Measures water levels for flood 

monitoring. 

TensorFlow Lite Model Runs on the ESP32 for real-time 

image processing and waste 

detection. 

GSM SIM 800L Module Sends notifications to users about 

water quality and flood conditions. 

Communication Module (e.g., 2.4 

GHz Radio, Wi-Fi) 

Facilitates communication between 

the drone and the ground control 

station. 
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Component Function 

Landing Gear It provides a stable base for takeoff 

and landing, protecting the drone’s 

components. 

 

C. The following are the main parts of the suggested system: 

Drone Technology: To identify waste and keep an eye on the condition of the water, 

drones fitted with cameras take pictures of the water's surface. To recognize and categorize 

waste products, the acquired photos are analyzed using a TensorFlow Lite model that has 

been trained beforehand. ESP32-CAM: Based on the Espressif Systems ESP32 processor, the 

ESP32-CAM is an inexpensive microcontroller development board with built-in camera 

capabilities. Owing to its powerful capabilities, small size, and versatility (Guo et al., 2020). 

 

D. System circuit diagram: 

 
Figure 1. Water sample images 

 

1. ESP32 Microcontroller: The ESP32 microcontroller acts as the GSM module's central 

processing unit and manages data gathering and communication among various sensors. 

2. Ultrasonic Sensor: Ultrasonic sensors measure water levels and provide vital information 

for flood monitoring. Processing of the sensor data reveals variations in water levels, 

suggesting possible flood dangers.  
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3. GSM SIM 800L Module: This integrated module allows users to receive notifications. It 

sends information about flood conditions, water waste levels, and water quality to a 

distant server, which notifies consumers by SMS or other means.  

4. TensorFlow Lite Model: An ESP32-based machine learning model is trained with transfer 

learning on the Inception-v3 algorithm and found to detect waste in water photographs 

with 92% accuracy. 

 

The ultrasonic sensor can give the affected flooded area a range or level. The equation can 

provide the ultrasonic sensor-based distance: 

Distance = (Speed of Sound × Time)/

2…………………………………………………Equation.1. 

About Dataset: 

The dataset consisted of 2 classes of images, 40 & 21 in number, in a directory and trained 

with a CNN model.  

Training set image counts: 

Clean-samples: 31 

Dirty-samples: 16 

 

Testing set image counts: 

Clean-samples: 9 

Dirty-samples: 5 

 

 
Figure 2. Water sample images 
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E. Hyperparameters used: 

The key hyperparameters used in the script are listed here, along with their values and a 

brief explanation (Garcia et al., 2019):  

Table 2. Model hyperparameters 

Hyperparameter Value Description 

target_size (150, 150) The size to which all images will be 

resized. 

batch_size (train) 128 The number of images to be processed 

together during training. 

batch_size (test) 12 The number of images to be processed 

together during testing/validation. 

class_mode 'categorical' The type of label arrays that are 

returned are one-hot encoded arrays. 

rescale (train/test) 1.0/255 Rescaling factor. Applied to all images. 

shear_range 0.2 Shear Intensity (Shear angle in 

counter-clockwise direction in 

degrees). 

zoom_range 0.2 The range for random zoom. 

horizontal_flip True Randomly flip inputs horizontally. 

weights 'Imagine' Pre-trained weights were used to 

initialize the model. 

include_top False Whether to include the fully-connected 

layer at the top of the network. 

input_shape (150, 150, 3) The shape of the input image is 

150x150 pixels with three color 

channels (RGB). 

units (Dense layer 

1) 

128 Number of neurons in the first dense 

layer after the global average pooling 

layer. 

activation (Dense 

layer 1) 

'rel' The activation function is used in the 

first dense layer. 

units (Dense layer 

2) 

2 The number of neurons in the final 

dense layer should match the number 

of classes. 

activation (Dense 

layer 2) 

'softmax' The activation function is used in the 

final dense layer for multi-class 

classification. 

optimizer Adam() The optimizer is used to compile the 

model. 

loss 'categorical_crossentropy' The loss function is used to train the 

model. 
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Hyperparameter Value Description 

metrics ['accuracy'] List of metrics to be evaluated by the 

model during training and testing. 

epochs 20 Number of epochs (iterations over the 

entire dataset) for model training. 

shuffle (test 

generator) 

False Whether to shuffle the data in the test 

generator. 

 

These hyperparameters are essential to setting up and training the model. Modifying them 

can significantly affect how well the model performs and behaves throughout training. 

 

Result and Discussion 

The deployed system was tested in various settings to see how well it monitored flood 

hazards and water quality in real-time—the drone's capacity to acquire and transfer high-

definition photographs made detecting and classifying waste possible. The Inception v33-

trained TensorFlow Lite model handled these photos effectively while retaining high 

accuracy levels, with an approximate accuracy of 92%.  

The ultrasonic sensor made reliable water level readings possible by mapping them to 

specific risk zone water levels. Water levels can be calculated and sent via SIM800L to 

dedicated users to notify them, which is essential for prompt flood monitoring and 

detection. Thanks to the integration of the GSM module, users could respond promptly to 

possible threats by receiving real-time alerts on flood conditions and water quality (L. C. C. 

da Silva et al., 2019). 

The inception V3 deep learning model could obtain 92% accuracy on the Inception-v3 

algorithm and effectively predicted both water classes.  

 
Figure 3. Proposed drone system 
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The drone system can be utilized, as shown in Figure .3, to capture floods, and the 

tensorflow lite model deployed in the esp-32 module allows users to deal with computer 

vision-based prediction for clean or dirty water. Also, sim 800L is utilized to get SMS 

notification alerts. This will enable people from remote localities to get messages through 

an AIoT-based system (Ahmed et al., 2021). 

 

A. Ultrasonic sensor-based water level detection 

The ultrasonic sensor yielded a good result in predicting the water level. This helps 

with the early monitoring of floods using SMS technology. Early warnings can be made, 

though high-quality drones have already been built to monitor any specific geo-locations 

through live video feeds. Still, this self-built drone system can utilize sensors-based 

technology to monitor water levels precisely. The figure below shows the ultrasonic sensor 

monitored values, which gives the range of water levels above a fixed threshold level (J. da 

Silva et al., 2020). 

 
Figure 4. Ultrasonic sensor values from serial monitoring 

 

B. Future Work  

Future work will extend the system's functionalities and versatility to contribute to 

more proficient natural checking and administration arrangements. Improving the system's 

capabilities might include joining extra sensors and information sources, progressing the 

strength of the machine learning models, and creating more modern information analytics 

instruments. Versatility endeavors will guarantee that the framework can be conveyed in 

different geographic areas and adjusted to distinctive natural settings. Moreover, joining 

prescient analytics and mechanized reaction instruments makes the framework more 

proactive in overseeing natural risks. These headways will create a more comprehensive 
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and versatile checking framework, eventually contributing to superior natural stewardship 

and more flexible communities (Faúndez et al., 2023). 

 

Conclusion 

Using AIoT technology in flood hazard and water quality monitoring over more 

conventional approaches has several benefits. The suggested system gives consumers 

precise, real-time data and notifications using drone technology, ESP32, TensorFlow Lite, 

and several sensors. The model's high accuracy and successful implementation highlight 

this approach's promise in tackling the problems of water pollution and global warming. 

Future work will expand the system's functionalities and scalability to contribute to more 

efficient environmental monitoring and management solutions.  

The model was trained using the Inception-v3 Deep learning model, and an excellent 

accuracy of about 97% was obtained on the testing set. This model can be used to manage 

water quality and increase sustainability practices worldwide, creating a healthier world for 

all. 
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